Journal Name: Journal of Geography, Environment and Earth Science International
Manuscript Number: Ms_JGEESI_35612
Title of the Manuscript: VARIABILITY OF TOTAL LATENT HEATING RATE OVER THREE CLIMATIC ZONES IN WEST AFRICA
Type of the Article: Original Research Article

General guideline for Peer Review process:
This journal’s peer review policy states that NO manuscript should be rejected only on the basis of 'lack of Novelty', provided the manuscript is scientifically robust and technically sound.
To know the complete guideline for Peer Review process, reviewers are requested to visit this link:
(http://www.sciencedomain.org/page.php?id=sdi-general-editorial-policy#Peer-Review-Guideline)

PART 1: Review Comments

Compulsory REVISION comments

Reviewer’s comment
Highlight on a map as three climatic zones considered in the study.
It is recommended that you specify a study area at 4ºN - 20ºN and long - 17ºW - 20ºE.
Questions that may have more comments and discussions:
Why does the Savana region have a higher rate than Guinea?
Because the latent heat decreases with an altitude in the three regions. Are there any documents that can discuss this matter in more detail?
It is recommended that the first paragraph of the conclusions be withdrawn as it is not a repetition without a summary of the beginning of the article.

Minor REVISION comments

Comment:
Comment: it is possible to understand the decrease of the latent heat in the atmospheric layer of 4 km - 7 km is associated to the atmospheric block caused by the high-pressure system (subtropical high South-North Atlantic) operating throughout the centre of the Atlantic?
(Brazil, in particular).

Optional/General comments

Final comments: I see that the work has a potentiality in the regional studies of precipitation distribution.
To recommend associating the information in the present work, together with data of meteorological stations surfaces, in the same scale of temporal analysis.
Other macro-scale surveys with extra-continental cycles and African periods are also recommended, for example, a relationship of condensation core (cloud) systems and Atlantic decadal oscillation, Madden-Julian oscillation, Pacific multi-decadal oscillation, especially associated the data with the periods of La Nina and El Nino.
There is a great potential of the study for a region of West Africa, mainly in a region of rains and historically dry, like Sahel.

Reviewer Details:

Name: Gustavo Zen de Figueiredo Neves
Department, University & Country: Graduate Program in Environmental Engineering Sciences, School of Engineering of São Carlos, University of São Paulo, Brazil