Editor’s Comment:

In the Abstract, the authors write in Conclusion part that “Despite strengthened mercury emission regulations, mercury measured in rainwater is increasing”, but the authors only measured other elements in rainwater and snow, not mercury. They assumed that mercury presented in the coal fly ash particles, but the right is to measure the concentration of mercury in rain water and snow. Also, the author presented the mercury content in coal fly ash from the literatures (Table1), but they must analyze the mercury contents in coal fly ash from the same locations of rainwater and snow samples. This manuscript is not organized well in the “result and discussion” section (i.e. The authors presented the data in tables 3 and 4, but they did not discuss it with relation to mercury in rainwater and snow). The abstract must not refer to table 1.

Author’s Feedback:

We have made modifications to the manuscript that we believe will address this Editor’s concerns. Here we provide some background as to our rationale. Scientific discoveries are in many instances a logical progression of understanding; one discovery or insight leads to the next typically more precise understanding, which leads to the next, and so forth. This has certainly been the case in the present line of investigation. During the initial phases of the investigation, we did not realize some of the implications that would be subsequently be revealed, for example, as described in the present with respect to mercury. The purpose of the present paper, in addition to providing further analytical data, is to describe to the scientific community the implications regarding our insight on the very likely mercury contamination of the biosphere through the use of aerosolized coal fly ash sprayed into the region where jets fly and clouds form. We do not disagree with the importance of incorporating mercury in future analyses. The scientific community should be made aware of our insights on this possible mode of mercury contamination so that independent investigations can proceed forward, perhaps yielding additional insights. Moreover, publication of our paper is consistent with the Precautionary Principle in Public Health which holds that the public should be notified of potential widespread health risks even before the full extent and level of exposure is known.