Original Research Article

EFFECT OF CURCUMIN ON SPATIAL WORKING MEMORY AND OXIDATIVE STRESS BIOMARKERS IN ALLOXAN-INDUCED DIABETIC SWISS ALBINO MICE

ABSTRACT

The study was undertaken to evaluate the effect of curcumin on blood glucose level and neurobehavioral response in Alloxan-induced diabetic Swiss Albino mice. The animals were divided into five (5) groups of four each (n=4). Group I served as control and received distilled water, group II, III, IV and V were diabetic and received olive oil 1 ml/kg, glibenclamide 1 mg/kg, curcumin 50 mg/kg and curcumin 100mg/kg respectively. Diabetes was induced using Alloxan (150 mg/kg). All administrations were done via oral gavage for a duration of 21 days. Oxidative stress biomarkers (catalase, superoxide dismutase and glutathione peroxidase) were assayed using standard assay kits and cognitive impairment was determined using spontaneous alternation in the Y-maze. The result obtained showed that curcumin possesses antioxidant activity at 100 mg/kg with a higher percentage alternation when compared with olive oil (1 ml/kg). This study demonstrated that curcumin significantly (p < 0.05) attenuated diabetes-induced cognitive impairment in the Y-maze. The findings of this study suggest that curcumin has antioxidant activity and may ameliorate diabetes-induced cognitive impairment in Swiss albino mice.

Keywords: curcumin, cognitive impairment, mice, diabetes

1.0 INTRODUCTION

Cognitive impairments in the diabetic population are emerging problems that warrant immediate research attention. Evidences from neurocognitive tests suggest that cognitive dysfunction should be listed along with retinopathy, neuropathy, nephropathy and cardiovascular complications as one of the complications of diabetes [1,2]. Diabetes mellitus affected more than 415 million people in 2015 and this is projected to double by the year 2040. Nigeria has a prevalence of 0.8% to 11% involving both rural and urban dwellers with about 2% reported in Zaria [3,4]. The management of diabetes place an enormous burden on individuals and government. The mechanisms underlying the development of cognitive dysfunction in diabetes have not been fully elucidated. Many hypotheses have been suggested based on the pathophysiological mechanisms through which diabetes might affect the initiation and progression of the pathology of dementia [5].
It is well established that oxidative stress is implicated in both the onset and progression of diabetes and its complications. It has been shown that cognitive deficit caused by hyperglycemia in diabetic rat is associated with an increase in ROS levels and reduction of antioxidant levels [6,7]. In addition, increased ROS generation has been shown to activate various cellular signalling pathways, such as the polypol pathway, protein kinase C activation, and increase of glucose shunting via the hexosamine pathway, all of which are related to neuronal injury and cerebral damage. Interestingly, it was shown that administration of antioxidants could reverse the cognitive dysfunction in the diabetic rats [6,7].

Curcumin, commonly called diferuloyl methane, is a hydrophobic polyphenol derived from the herb Curcuma longa. Turmeric has been used traditionally for many ailments because of its wide spectrum of pharmacological activities. Curcumin has been identified as the active principle of turmeric; chemically, it is a bis-a, b-unsaturated b-diketone that exhibits keto-enol tautomerism. Scientific research spanning over more than four decades has confirmed the diverse pharmacological effects of curcumin and established its ability to act as a chemopreventive agent as well as a potential therapeutic agent against several chronic diseases [8].

Curcumin has been shown to exhibit antioxidant, anti-inflammatory, antimicrobial, and anticarcinogenic activities. It also has hepatoprotective and nephroprotective activities, suppresses thrombosis, protects against myocardial infarction, and has hypoglycemic and antirheumatic properties [9]. Moreover, curcumin has been shown in various animal models and human studies to be extremely safe even at very high doses. In spite of its efficacy and safety, curcumin has not yet been approved as a therapeutic agent [9,10,11].

2. MATERIALS AND METHOD

2.1 Chemicals and drugs:
All chemicals and drugs were of analytical grade. Curcumin was purchased from Arkure Health Center (Haryana, India). Alloxan was purchased from (Sigma chemical Company St. Louis U.S.A.). A digital glucometer (Accu-Chek Advantage, Roche Diagnostic, Germany) was used for the determination of the blood glucose levels of the animals.

2.2 Experimental animals:

A total of twenty (20) Swiss Albino Mice of both sexes weighing (20 – 30) grams were used for the study. The animals were housed in plastic cages under standard laboratory conditions with free access to food and water. Animals were allowed for two weeks to acclimatization to the laboratory environment before the commencement of the experiments.

2.3 Induction of experimental diabetes mellitus:

The animals were fasted for 12-16 h with free access to water prior to the induction of diabetes. Diabetes was induced by single intraperitoneal injection of Alloxan monohydrate (Sigma St. Louis, U.S.A.) at a dose of 150 mg/kg bw dissolved in 0.9% cold normal saline [12]. The mice were then kept for the next 24 h on 5% glucose solution bottles in their cages to prevent hypoglycemic [13]. The blood samples were obtained from the tail. A glucometer was used to measure the blood glucose levels using glucose oxidase principle [14] using the digital glucometer. Hyperglycemia was defined by fasting blood glucose level > 200 mg/dl [15]

2.4 Experimental design:

The diabetic animals were randomly divided into four (4) groups of four (4) mice each and a normoglycemic group of four (4) mice to serve as normal control. All administration was done orally for a duration of 21 days as follows

Group I: Normoglycemic control, received distilled water

Group II: Diabetic control, received olive oil 1 ml/kg.
Group III: Diabetic, received glibenclamide (glib) 1 mg/kg

Group IV: Diabetic, received curcumin (cur) 50 mg/kg

Group V: Diabetic, received curcumin (cur) 100 mg/kg

2.5 Determination of Spatial Working Memory using Y-maze

Spatial working memory was assessed using spontaneous alternation version in Y-maze. In this version each mice was placed in the Y-maze for 5-6 min and the number of arms entered as well as the sequence of entries were recorded and a score was calculated to determine alternation rate. An alternation is defined as entry into all three arms consecutively. Y-maze function is sensitive to damage in areas concerned with learning and memory functions such as the hippocampus, and is also disrupted by drugs that cause memory loss [16].

2.6 Estimation of oxidation stress biomarkers

2.6.1 Catalase activity

The serum catalase (CAT) activity was determined using mice catalase ELISA (GenAsia, GA-E3956RT) kit in accordance to the manufacturers manual. Principle: the kit uses enzyme-linked immune sorbent assay (ELISA) based on biotin double antibody sandwich technology to assay mice CAT.

2.6.2 Superoxide dismutase activity

The superoxide dismutase (SOD) activity was determined using mice superoxide dismutase ELISA (GenAsia, GA-E3956RT) kit in accordance to the manufacturers manual. **Principle:** the kit uses enzyme-linked immune sorbent assay (ELISA) based on biotin double antibody sandwich technology to assay mice SOD.

2.6.3 Glutathione peroxidase activity
The glutathione peroxidase (GPx) activity was determined using mice glutathione peroxidase (GenAsia, GA-E3957RT) ELISA kit in accordance to the manufacturers manual. Principle: the kit uses enzyme-linked immune sorbent assay (ELISA) based on biotin double antibody sandwich technology to assay mice GPx.

2.6.4 Malondialdehyde activity

The malondialdehyde (MDA) activity was determined using mice malondialdehyde (GenAsia, GA-E0164RT) ELISA kit in accordance to the manufacturers manual. Principle: the kit uses enzyme-linked immune sorbent assay (ELISA) based on biotin double antibody sandwich technology to assay mice MDA.

2.7 Statistical analysis:

Data obtained were expressed as mean ± SEM. The data were statistically analyzed using ANOVA followed by Fischer’s least significant difference (LSD) and Tukey’s post hoc analysis to compare the level of significance using Statistical Package for Social Sciences (SPSS). The value of p < 0.05 was taken as significant.

3. RESULTS

3.1 Percentage Alternation of Curcumin Treated Diabetic Swiss Albino Mice

Figure 1. Bar chart showing the results of the effects of curcumin (50 mg/kg and 100 mg/kg) on spatial working memory of alloxan-induced diabetic Swiss albino mice. The 100 mg/kg dose of curcumin showed significant (P < 0.05) increase in the percentage spontaneous alternation after 21 days of administration, when compared to the diabetic control group treated with olive oil with values of 74.39 ± 8.06 % compared to 47.50 ± 13.65 % respectively.
Figure 1. Effect of curcumin on spatial working memory. Values with error bars having different superscripts letters are significant (p < 0.05) compared to b.

3.2 Antioxidant Activity of Curcumin Treated Diabetic Swiss Albino Mice

Figure 2. Bar chart showing the results of the effects of curcumin (50 mg/kg and 100 mg/kg) on serum catalase, SOD and GPx level of alloxan-induced diabetic Swiss albino mice. The curcumin treated groups showed significant (P < 0.05) increase in the serum catalase and SOD level after 21 days of administration, when compared to diabetic control with values of 78.92 ± 3.94 IU/L and 85.05 ± 3.23 compared to the 62.27 ± 7.07 IU/L and 8.94 ± 1.16 IU/L and 12.84 ± 0.96 IU/L respectively.
Figure 2. Effect of Curcumin on Antioxidant enzymes in Alloxan-Induced Diabetic Swiss Albino Mice. Values with error bars having different superscripts letters are significant (p < 0.05); a,* = compared with diabetic control, b = compared with glib

3.3 Lipid Peroxidation of Curcumin Treated Diabetic Swiss Albino Mice

Figure 3. Bar chart showing the results of the effects of curcumin (50 mg/kg and 100 mg/kg) on serum MDA level of alloxan-induced diabetic Swiss albino mice. The curcumin treated groups showed significant (P < 0.05) decrease in the serum MDA level after 21 days of administration, when compared to diabetic control with values of 7.44 ± 1.62 compared to 13.27 ± 1.19 respectively.
Figure 3. Effect of Curcumin on Antioxidant enzymes in Alloxan-Induced Diabetic Swiss Albino Mice. Values with error bars having different superscripts letters are significant (p < 0.05); a, * = compared with diabetic control, b = compared with glib

4. DISCUSSION

Hyperglycemia is one of the leading cause of neurotoxicity and cognitive impairment through increase generation of ROS, activation of polyol pathway and advanced glycation end products and glucose shunting into hexosamine pathway which lead to end organ damage and neuronal death [17,18]. Diabetic mellitus is a metabolic disease associated with impaired glucose metabolism which in effect alters intermediary metabolism of lipids and proteins adversely [19]. Alloxan, a beta cytotoxin, destroys pancreatic β-cells of islets of Langerhans resulting in a decrease in endogenous insulin secretion and paves ways for the decreased utilization of glucose by body tissues leading to elevation of blood glucose level, decreased protein content, increased
levels of cholesterol and triglycerides [20]. Turmeric has been used traditionally for many ailments because of its wide spectrum of pharmacological activities.

It is evident that hyperglycemia is associated with memory impairment as observed in all the groups that were diabetic (day 0) in this study. This was further confirmed by the result obtained in the control group which show further impairment in the spatial working memory after 21 days. Suggesting that the effect of the hyperglycemia, reactive oxygen species formation might be responsible for the further impairment in spatial working memory in diabetes. Hyperglycemia, ROS and inflammation have been implicated in the pathogenesis of cognitive impairment in diabetes [21]. The results obtained in the high dose (100 mg/kg) of curcumin treated group showed a significant (p < 0.05) increase in percentage spontaneous alternation in Y maze test when compared to the control group. This is an indication that curcumin at high dose ameliorate the spatial working memory impairment induced by hyperglycemia. The group that received standard antidiabetic drug does not show any significant change (p < 0.05) in spatial working memory compared to the diabetic control. Also the low dose of curcumin (50 mg/kg) shows improvement which was not significant, compared to the diabetic control. Comparing between day zero (pre-treatment) and day twenty one (post-treatment), there was significant increase in the percentage spontaneous alternation at 100 mg/kg dose of curcumin. These indicate that twenty one days administration of curcumin ameliorated the spatial working memory impairment induced by diabetes. These effect might be as a result of the ability of curcumin to reverse the oxidative stress state induced by alloxan. Hyperglycemia and reactive oxygen specie are the leading causes of dementia and cognitive deficits [21].

The result showed a significant (P < 0.05) increase in antioxidant enzymes (CAT and SOD) activities in the curcumin treated group, when compared to the control group. This finding
indicate that curcumin at both doses possess antioxidant effect by elevating the level of the antioxidant enzymes. The increase in antioxidant enzyme activities in the curcumin treated groups may be due to increase generation of ROS, occurring in oxidative stress associated with hyperglycemia.

The antioxidant enzymes play a crucial role in the cellular defence against ROS [22]. The SOD offers the first line of defence against ROS by scavenging and catalyzing dismutation of superoxide, produced by cellular metabolism, into hydrogen peroxide (H_2O_2) and oxygen (O_2) [23,24]. CAT and GPx are involved in the reduction of H_2O_2 into H_2O and O_2 [25]. The observed increase in SOD and CAT in curcumin treated groups indicates that curcumin was able to scavenge free radical by sparring the endogenous antioxidant or the endogenous antioxidant enzymes has been used up as a result of scavenging free radical. This result disagree with the finding of Al Rubaei et al. (2014)[26] who reported decrease in antioxidant activity in curcumin treated rats in vivo whereas the results of the present study agree with that of Tokac et al. (2013)[27] who reported an increase in the antioxidant activity in curcumin treated groups.

Lipid peroxidation result obtained in the curcumin treated group showed a significant ($P < 0.05$) decrease when compared to the control group. The decrease in plasma MDA concentration observed in the present study suggests that the lipid peroxidation was decreased by daily administration of curcumin. The decrease in lipid peroxidation further indicate that curcumin has strong antioxidant activity and that the effect observed in short term memory of diabetic mice. This result agree with the finding of Tokac et al. (2013)[27] who reported a decrease in MDA level in curcumin treated rats at lower dose and that of Nayereh, (2016)[28] who reported a decrease in MDA level in curcumin treated patients of type II diabetic patients.
5. CONCLUSION

In conclusion, oral administration of curcumin has significant antioxidant activity and improve short term memory on diabetic Swiss albino mice and this positive effect are comparable to or even stronger than that of standard anti-diabetic drug (glibenclamide). This may justify the use of supplements in the management of memory loss in diabetes

CONSENT

It is not applicable

ETHICAL APPROVAL

All authors hereby declare that all experiments have been examined and approved by the appropriate ethics committee and have therefore been performed in accordance with the ethical standard laid down in the 1964 Declaration of Helsinki

REFERENCES

molecule to biological function. Angewandte Chemie (International ed. In
English).2012; 51(22): 5308-32
9. Aggarwal BB, Harikumar KB. Potential therapeutic effects of curcumin, the anti-
inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic,
 autoimmune and neoplastic diseases. The International Journal of Biochemistry and Cell
10. Anand P, Thomas SG, Kunnumakkara AB, Sundaram C, Harikumar KB, Sung
B, Tharakan ST, Misra K, Priyadarsini IK, Rajasekharan KN, Aggarwal BB. Biological
activities of curcumin and its analogues (Congeners) made by man and Mother Nature.
Biochemical Pharmacology. 2008; 76(11):1590-611
11. Goel A, Kunnumakkara AB, Aggarwal BB. Curcumin as "Curecumin": from kitchen to
on the occurrence of alloxan or STZ-induced diabetes in rats. Hormonal Metabolism
Research. 1999; 24: 508-510
13. Dhandapani S, Subramanian VR, Rajagopal S, Namisivayam N. Hypolipidemic effect of
46: 251-255
15. Matteucci E, Giampietto O. Proposal open for discussion: defining agreed diagnostic
163-172
16. Hughes RN. The value of spontaneous alternation behavior (SAB) as a test of retention in
pharmacological investigations of memory. Neuroscience and BiobehavioralReviews.2004;
28: 497–505
17. Comin D, Gazarini L, Zanoni JN, Milani H, de Oliveira RMW. Vitamin E improves
learning performance and changes the expression of nitric oxide-producing neurons in the
18. Valente T, Gella A, Fernàndez-Busquets X, Unzeta M, Durany N. Immunohistochemical
analysis of human brain suggests pathological synergism of Alzheimer's disease and
19. Onakpa MM, Ajagbonna OP. Antidiabetic potentials of cassia occidentalis leaf extract on
alloxan induced diabetic albino mice. International Journal of PharmTech Research,
2012; 4(4), 1766-1769.
2008; 36: 343–347

