ABSTRACT

The immunomodulatory and toxicological properties of Goya extra virgin olive oil on albino rats orogastrically dosed with Salmonella typhi were evaluated in this study. Twenty albino rats were randomly distributed into four groups (A-D) of five rats each. The groups (B-D) infected with Salmonella typhi, revealed that the animals show depressed activity and weakness characterised by slow movement. The rats in groups B were treated with olive oil, group C were treated with 20 mg ofloxacin, while Group A rats served as control and group D rats were left untreated. Group B and C rats were treated orogastrically with olive oil and ofloxacin daily for seven days. The total phenol derivative present in the olive oil which contributes to the observed inhibitory effect of the oil was 14.90 mg/g. At the end of the treatment period, haematological analysis of the groups infected and fed with olive oil (B) showed white blood cell count (WBC) to be within the normal range (11.8×10³/mm³) indicating the immunomodulatory effect of olive oil. The WBC was least in value in the control group (A) (6.7×10³/mm³) and highest in the untreated group (D) whose WBC (15.9×10³/mm³) was outside the normal range of WBC for an apparently healthy rat. The control group had the highest PCV (Packed cell volume) value of 56%, while olive oil to some extent help to modulate the PCV which can be revealed when the group treated with olive oil (52%) was compared with the untreated group (41.3%). Histopathological analysis shows liver of all infected group to have karyolysis and have cells that shows less prominent nucleus. The kidney of all the infected animals in group fed with olive oil (B) and those treated with antibiotics (C) shows infiltrations of cell, destruction of the glomerular tuft, and focal destruction of the renal tubules while The group left untreated (D) showed Tubular necrosis, vacuolation, destruction of the renal tubules, hyalinization, and degeneration of the glomerular tuft with possible infiltration of lymphocytes. The findings of this study revealed the non-toxic and immunomodulatory properties of olive oil, its suitability as an amazing food supplement that can improve human health and its efficacy as an alternative to antibiotics.

Keywords

Immunomodulatory, bioassay, Salmonella typhi, Goya extra virgin olive oil, orogastrically
INTRODUCTION

Olive oil is pale yellow to greenish oil with a very distinctive flavour obtained from the pulp of olives by separating the liquids from solids. Olive oil was used in the ancient world for lighting, in the preparation of food, and as anointing oil for both ritual and cosmetic purposes. Olive oil is one of the most digestible of the edible oils and a good source of vitamin E (Owen et al., 2004). Historically, the products of *Olea europaea* active components and clinical applications of olive oil have been used as aphrodisiacs, emollients, laxatives, nutritives, sedatives, and tonics. Specific conditions traditionally treated include colic, alopecia, paralysis, rheumatic pain, sciatica, and hypertension (Gilani et al., 2005). Olive oil’s characteristic aroma, taste, colour, nutritive properties, and stability distinguish it from other edible vegetable oils. The positive influence of olive oil on health include an improvement in blood lipid profile by lowering the bad LDL-cholesterol (Low Density Lipoprotein) level while significantly raising the level of good HDL-cholesterol (High density Lipoprotein) in the bloodstream. Olive oil consumption reduces coronary heart diseases, diabetes, certain cancer risks such as breast, prostate and colon cancers, certain malignant tumours (endometrium, digestive tract, skin tumours) and some other chronic diseases (Owen et al., 2000). Olive oil is believed to exert its biological benefits mainly via constituent antioxidants. Although the composition of olive oil is complex, the major groups of compounds thought to contribute to its observed health benefits include oleic acid, squalene, sterols (as β-sitosterol), polyphenols (tyrosol, hydroxytyrosol, oleuropein and many others), tocopherols, terpenoids, and traces of other constituents (Owen et al., 2000; Covas et al., 2006) all of which have been found to inhibit oxidative stress.

Recent advances have been made in the scientific understanding of how diet and specific foods within a balanced diet promote health and prevent illnesses. Not surprisingly, consumers are turning toward foods with medicinal properties as promising dietary interventions for disease prevention and health maintenance. As part of this trend, interests in the Mediterranean diet and specific foods that are integral to this diet have grown significantly. A common feature of the Mediterranean diet is a high consumption of olives and olive oil as the primary sources of dietary fat. In vitro studies have demonstrated the antimicrobial activity of hydroxytyrosol, Phenolic, tyrosol, and oleuropein against several strains of bacteria implicated in intestinal and respiratory infections. Phenolic compounds have been shown to inhibit the growth of *Escherichia coli*, *Klebsiella pneumoniae* and *Staphylococcus aureus* (Fabiani et al., 1998). Oleuropein has been shown to inhibit sporulation of *Bacillus cereus* (Tassou, 1991). Hydroxytyrosol is a powerful antioxidant that has been the subject many research studies and has shown several biological properties, particularly anti-inflammatory, antifungal, antiviral and antibacterial activities. Hydroxytyrosol resulted effective against clinical human pathogenic strains of *Haemophilus influenzae*, *Moraxella catarrhalis*, *Salmonella typhi*, *Vibrio parahaemolyticus* and *S. aureus* (Bisignano et al., 1999). Increasing resistance to antibiotics, wide-spread use of immune-suppressing drugs and a rise in bacterial infections emphasize the necessity to find and develop
new antimicrobial agents. Hence, this present work is therefore aimed at providing relevant information on
the immunomodulatory, toxicological and physicochemical properties of Goya extra virgin olive oil

MATERIALS AND METHODS

Animal’s treatment and diet
Handling and treatment protocols of animals were strictly adhered to as laid down in the ethical guide
rules. Twenty adult albino rats weighing between 60 and 120 g were obtained from Iwo Osun State, Nigeria
and used for this research. The animals were transported to the department of microbiology, Faculty of
science, Federal university of technology Akure, Akure Nigeria. They were randomly assigned into four study
groups of five rats per group. They were housed in woody cages with wire screen top and kept under adequate
ventilation and environmental temperature. The animals were maintained on a commercial rat chow with tap
water and food (finisher) provided to the rats and following acclimatisation and infection, a group of the
infected rat were treated with Goya extra virgin olive oil (a product of Goya Andalucía manufactured in
España Spain which was purchase from Naosupermarket Oja Oba market Akure, Ondo State, Nigeria.)

Preparation of inoculant for infectivity of the animal
Aseptically with the aid of a sterile inoculating loop, a pure strain of the test organism was picked from a
preserved slant culture and inoculated into a sterile nutrient broth solution (nutrient agar solution whose
gelling factor had been decanted out). The broth culture was shaked thoroughly to ensure even distribution of
the organism in the broth. The broth culture was then incubated at 37°C for 24 hours after which the broth
culture was centrifuged in a centrifuge so as to harvest the pure decanted cells. The pure cells were further
washed by adding sterile water to the sediments and re-centrifuge for 3 more times. The resultant residue cell
was obtained by decantation and was transferred into a sterile specimen bottle which was filled up to the 10ml
mark with sterile water for infectivity. 1ml of the prepared organism was ingested orally into the rat with the
aid of a syringe.

Infectivity assay and treatment
Following acclimatisation for one week, Animals in groups B to D were infected with the prepared inoculant
of *Salmonella typhi* and the rats were left without food for 24 hours so as to enhance infectivity. While those in
group A were left uninfected (control) and given normal feed. After three days of infection, Group B were fed
with olive oil in which 1ml of the olive oil was ingested orally into the rat daily, group C were treated with
antibiotics (ofloxacin) in which 200mg of the antibiotics was dissolve in 10 ml of sterile water and 1ml of the
dissolve drug ingested orally into the rat daily for seven days, and group A and D while left untreated with
neither olive oil nor antibiotics.

Haematological assay
The animals were sacrificed and their blood was collected by cervical collection into labelled EDTA bottles.
Haematological parameters were determined using the methods describe by (Bamidele *et al.*, 2010).
Histopathology analysis

One rat per group were removed and anaesthetised in chloroform vapour and dissected. The liver and kidney of the rat were removed and fixed in 10% formalin to prevent decay. They were dehydrated in different percentage (50%, 60%, 70%, 80%, 90%, and 100%) of alcohol for one hour 30 minute each. After dehydration they were cleared with 100% xylene and left for 2 hours to remove any remnant alcohol and impregnated in liquid wax for 2 hours for embedding. The embedded organs were sectioned using microtome and were stained with haematoxylin-eosin. Excess stain was removed with tap water. After clearing in xylene, Canada balsam was added and cover slips placed on the slide. The preparations were left in the oven at 40°C and then placed under the microscope with a digital camera connected to a computer system to be examined by an expert and take the photographs (Bamidele et al., 2010).

Mineral analysis

The oil samples were analysed for mineral content present in them using the method described by Omotosho et al., (2015), the minerals were analysed from solution obtained by first drying 3g of the oil sample on hot plate, they were transferred to muffle furnace for two and half hours at 750°C. After it has been cooled down in a desiccator, 2 ml of Aquaregia was added to dissolve the ash. Using distilled water it was made up to the 50 ml mark using distilled water. The values of the mineral contents are read on the atomic absorption spectrophotometer. Atomic absorption is a very specific technique and to avoid any major interference, an ultrapure water (Millipore) was used also since Most reagent grade acids contain some metallic impurities in trace amounts, an acid blank was run to compensate for this problem. The detection limit was calculated using:

\[
\text{Detection Limit} = \frac{\text{Standard Conc} \times 3 \text{ Std. Dev}}{\text{Mean}}
\]

The calculation was made independently for each standard concentration, and the detection limit is the average of the two results.

Phytochemical screening

The total phenol content of the olive oil was determined by the method of (AOAC, 2012).

Statistical analysis

All data were presented as mean ± SEM. The one way ANOVA was used to analyse the data, followed by a post-hoc test (LSD). The results were considered significant at p values of less than 0.05.

RESULT

Haematology Results

The results of the effects of Goya extra virgin olive oil on red blood cell count, white blood cell count, packed cell volume and haemoglobin concentration of albino rat orogastrically dose with salmonella typhi are shown in Table 1. The control group and the group fed with olive oil had a packed cell volume PCV of (56± 3.32 %) and (52.7± 3.68 %) respectively which was higher than the untreated and the group treated with ofloxacin. The white blood cells count of the control group (6.7± 0.26 \times 10^3/mm^3), the group treated with ofloxacin (10.0±
and the group fed with olive oil (11.8± 0.70 × 10^3/mm^3) were found to be lower than the untreated group which was 15.9± 1.10 × 10^3/mm^3 while the Haemoglobin of the control group and the group fed with olive oil were higher than the untreated group. The result of the white blood differential; lymphocyte, neutrophil, monocyte, eosinophil, and basophil of the control group, group fed with olive oil, group treated with ofloxacin and the untreated group are shown in table 1. When compared with other groups, the untreated group have the highest and lowest number of lymphocyte and neutrophil count respectively.

Table 1: Haematological parameters of the animal’s blood

<table>
<thead>
<tr>
<th>GROUP</th>
<th>ESR (mm/hr)</th>
<th>PCV (%)</th>
<th>WBC × 10^3/mm^3</th>
<th>RBC × 10^6/mm^3</th>
<th>Hb g/dl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A</td>
<td>1± 0.00</td>
<td>56± 3.32</td>
<td>6.7± 0.26</td>
<td>6.7± 0.39</td>
<td>18.7± 1.16</td>
</tr>
<tr>
<td>Group B</td>
<td>3± 0.82</td>
<td>52.7± 3.68</td>
<td>11.8± 0.70</td>
<td>6.6± 1.06</td>
<td>17.7± 1.24</td>
</tr>
<tr>
<td>Group C</td>
<td>2± 1.00</td>
<td>50.3± 3.40</td>
<td>10.0± 1.07</td>
<td>9.97± 1.32</td>
<td>16.7± 0.79</td>
</tr>
<tr>
<td>Group D</td>
<td>5± 0.58</td>
<td>41.3± 3.4</td>
<td>15.9± 1.10</td>
<td>9.4± 0.93</td>
<td>13.7± 1.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lymphocyte</th>
<th>Neutrophil</th>
<th>Monocyte</th>
<th>Eosinophil</th>
<th>Basophil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group A</td>
<td>63± 2.94</td>
<td>24± 1.30</td>
<td>11± 1.92</td>
<td>2± 0.82</td>
</tr>
</tbody>
</table>
where, ESR= Erythrocyte, PCV= Packed cell volume, WBC= White blood cell, RBC= Red blood cell, and Hb= Haemoglobin

Group A: Control group, Group B: Group infected and fed with olive oil, Group C: Group infected and treated with antibiotics, and Group D: Group infected and left untreated

Histopathology result

The result of the liver histopathology showed that the animals in the control group have normal liver structure in which the cells are in order and the hepatic sinusoids(S) separating the hepatic cord are in place lined by Kupfer cells. All the infected animals in the other group showed karyolysis (the whole cell stain uniformly) of the nucleus structure and have some cells with less prominent nucleus (Fig. 1). The untreated group remain the only group that have their sinusoid to have been greatly diffused. The kidney of the control group showed normal kidney structure without any deformation. All the infected animals in group B and C showed infiltrations of cell, destruction of the glomerular tuft, and focal destruction of the renal tubules. The group left untreated showed Tubular necrosis, vacuolation and destruction of the renal tubules, hyalinization and degeneration of the glomerular tuft with possible infiltration of lymphocyte (Fig. 2).

![Histopathology images](image1.png)

Fig. 1: Effect of various treatments on histopathology of the liver
PHYSICOCHEMICAL ANALYSIS RESULT
The result of the physicochemical analysis of the Goya extra virgin olive oil was shown in Table 2.

Table 2. Physicochemical properties of the olive oil

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RESULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECIFIC GRAVITY (g/cm³)</td>
<td>0.91 ± 0.02</td>
</tr>
<tr>
<td>ACID VALUE (mg/g)</td>
<td>2.72 ± 0.033</td>
</tr>
<tr>
<td>FREE FATTY ACIDS (mg/g)</td>
<td>1.36 ± 0.09</td>
</tr>
<tr>
<td>PEROXIDE VALUE (mg/kg)</td>
<td>18.80 ± 0.01</td>
</tr>
<tr>
<td>SAPONIFICATION VALUE</td>
<td>173.77 ± 0.31</td>
</tr>
</tbody>
</table>

MINERAL ANALYSIS RESULT
The result of the mineral analysis of the Goya extra virgin olive oil was shown in Table 3. It was noted that no traces of lead were present.

Fig. 2: Effect of various treatments on histopathology of the kidney
Table 3: Minerals properties of the olive oil

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RESULT (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pb</td>
<td>BDL</td>
</tr>
<tr>
<td>Fe</td>
<td>0.02</td>
</tr>
<tr>
<td>Zn</td>
<td>0.43</td>
</tr>
</tbody>
</table>

BDL = below detection limit

PHYTOCHEMICAL RESULT
The total phenol content present in Goya extra virgin olive oil was 14.90 ± 0.189 mg/g.

DISCUSSION
The control group had the highest PCV value of 56% meaning that there are 56 millilitres of cells per 100 millilitres of blood, while olive oil to some extent help to modulate the PCV which can be revealed when the group treated with olive oil (52%) was compared with the untreated group (41.3%). The WBC were least in value in control group \(6.7 \times 10^3/mm^3\) and highest in the untreated group whose white blood cell count (15.9×10^3/mm^3) was outside the normal range of white blood cell for an apparently healthy rat which was given to be within (6.6×10^3/mm^3 – 12.6×10^3/mm^3) according to Johnson (1996). This increased value may be due to infection in the rat since white blood cells are produce to fight against infection and this agrees with the view of Alberts et al. (2002) who showed white blood cell to increase during active infection. The white blood cell of group fed with olive oil (11.8×10^3/mm^3) is within the normal range of white blood cell for an apparently healthy rat but higher when compare with the control group indicating the fact that olive oil help to modulate the white blood cell. The Haemoglobin in the red blood cell of the group fed with olive oil (17.7± 1.24 g/dl)was higher than the group treated with ofloxacin and the untreated group (13.7± 1.00g/dl) indicating the fact that olive oil have to favourable effect on haemoglobin whose function is to efficiently carries oxygen from the lungs to the tissues of the body. This is further augmented by the mineral analysis which shows that olive oil contains iron (Fe) and about 70% of the body's iron is found in the haemoglobin. The lymphocyte is higher in the untreated group which may be due to infection in the rat since lymphocytes are produce in response to infection (Alberts et al. 2002). The small amount of neutrophil recorded in the untreated group may be due to a numbers of neutrophils used up during the first few days of infection since neutrophils are the first set of white blood cells that come into play immediately or within hours of an antigen's appearance in the body. The neutrophils were slightly higher in the group treated with olive oil compared to the group treated with antibiotics. Olive oil has been known to stimulate phagocytosis an action in which immune cells engulf and destroy microbes (Tuck and Hayball, 2002). The body already support phagocytosis, but olive oil help to increase the activity of phagocytosis. The primary mode of action of olive oil in the body is through antimicrobial effect, olive oil fight harmful microbe and boosts the immune system. The exact mechanisms for antimicrobial effect in the body varies but include interference with critical amino acid production essential for bacteria replication, inactivation of bacteria through prevention of their budding or assemblage at the cell.
membrane, and direct penetration of cell wall in bacteria (Falkow et al., 2004). The high value recorded in ESR (5mm/hr) for the untreated group may due to inflammation in the rat which causes the clumping together of the red blood cells and thus make them sink more quickly (Johnson, 1996). ESR for olive oil was 3mm/hr which was smaller than that of the untreated group. A number of compounds in olive oil such as oleuropein, hydroxytyrosol, and tyrosol inhibit the inflammation mediator’s nitric oxide and prostaglandin E$_2$ thereby offering excellent reduction of inflammation (Tuck and Hayball, 2002).

The result of the liver histopathology showed the animals in the control group to have normal liver structure in which the cells are in order and the hepatic sinusoids separating the hepatic cord to be in placed lined by Kupfer cells. This agrees with the work of Sharma et al. (2008) who showed that the liver histopathology of an apparently healthy rat to have normal liver structures. All the infected animals in the other group showed karyolysis which is the complete dissolution of the chromatin of a dying cell due to enzymatic degeneration. They also have some cells with less prominent nucleus that is; they have their boundaries to be less distinct. Karyolysis and the less prominent nucleus shown by the infected animals may be due to necrosis which is caused by factors external to the cell or tissue, such as infection in the animals. Cellular death due to necrosis does not follow the apoptotic signal transduction pathway, but rather various receptors are activated, and result in the loss of cell membrane integrity and an uncontrolled release of products of cell death into the extracellular space (Proskuryakov et al., 2003). The untreated group remain the only group that have their sinusoid to have been greatly diffused which may be due to the serious infection in this group since they were not given any form of treatment. The kidney of the control group showed normal kidney structure without any deformation which is in conformity with the work of Sharma et al. (2008) who showed kidney of apparently healthy rat to have normal histological structure of the renal corpuscle and renal tubules. All the infected animals in groups fed with olive oil and those treated with antibiotics showed infiltrations of cell (entering of fluid into the cell), destruction of the glomerular tuft, and focal destruction of the renal tubules which may be due to infections in these animals before treatment. Systemic and renal infections may lead to infiltrations of cell and inflammatory glomerular diseases (Nangaku and Couser, 2005). The group left untreated showed Tubular necrosis which means death of the tissue of the kidney tubules, vacuolation, destruction of the renal tubules, hyalinization a condition in which normal tissue deteriorates into homogenous translucent materials, and degeneration of the glomerular tuft with possible infiltration of lymphocyte indicating the fact that the animal in the group are seriously infected since they received no form of treatment. This concords with the view of Nangaku and Couser, (2005) who shows that infections may leads to glomerular basement membrane damage resulting from immune deposits in the capillary wall, accumulation of IgA complexes in the glomerulus (IgA nephropathy) and others such as vasculitic glomerulonephritis. Glomerulonephritis involves glomerular inflammation.

The specific gravity of Goya extra virgin olive oil was found to be 0.91 which expresses how bulky or thick or light the oil is. The free fatty acid which is a chemical parameter of the oil and a broad indicator of its quality was found to be 1.36 mg/g. Recent research has concluded that the fatty acids in the make-up of olive oil are
good allies in lowering important immunological parameters such as the proliferation of lymphocytes induced by specific mitogens of both B- and T-cells. These fatty acids have been reported to play an important part in various immune functions (Aigbodion, 2004). Oleic acid a fatty acid which acquired its name from olive oil is the most desirable nutritionally. Linolenic acid, with three double bonds, is the most chemically reactive and therefore undesirable from the view of stability. Palmitic acid is a saturated fatty acid and is also undesirable hence Olive oil with high oleic acid is nutritionally preferable and potentially more stable than low oleic olive oil (Sergio et al., 2010). The acid value obtained (2.72mg KOH/g) showed that the oil is edible since the value fall below maximum acceptable value of 4.0mgKOH/g for oil as recommended by Codex Alimentarius Commission for oil (Inekwe et al., 2012) the value also shown that it is not prone to spoilage by oxidation (rancidity). The saponification value was 173.77 mg/ml and as such cannot be used as soap making. Oil with a saponification value of 200mgKOH/g and above is regarded as high molecular weight fatty acid oil and is used in making of soaps (Inekwe et al., 2012). Saponification value is a measure of the equivalent weight of acid present and therefore it is an indication of purity. The peroxide value which is used as an indicator of deterioration of oils was found to be 18.80mg/kg this value is relatively low compared with the peroxide values of other oils of wild plants (Sergio et al., 2010). According to Epka and Epke (1996), high peroxide value is associated with high rancidity rate. Thus, with this fact, the low peroxide value obtained from olive oil is simply an indication that the oil is less liable to rancidity at room temperature.

The total phenol derivatives present in Goya extra virgin olive oil was 14.90 mg/g. They are the major groups of compounds thought to contribute to the observed inhibitory effect of olive oil they include tyrosol, hydroxytyrosol, oleuropein and many others. Phenolic compounds have also been shown to inhibit the growth of Escherichia coli, Klebsiella pneumonia and Staphylococcus aureus (Fabiani et al., 1998). Polyphenol are strong antioxidant hence, olive oil can serve as exogenous source of antioxidant to complement the endogenous source in the body. Polyphenol are important for stability as well as the flavour characteristics of bitterness and pungency in olive oil.

The mineral analysis of the oil reveals the oil to be free of lead which can cause lead poisoning in human. And the presences of iron in the oil augment the reason why haemoglobin in the red blood cell of the group fed with olive oil was higher than the group treated with ofloxacin and the untreated group since about 70% of the body’s iron is found in the haemoglobin. The presence of zinc in the oil further contribute to the reason why olive oil has immunomodulatory properties since zinc is needed for the body’s defensive (immune) system to work properly.

CONCLUSION

The information presented in this study is on the immunomodulatory, toxicological, and physicochemical activities of Goya extra virgin olive oil. The investigated oil expressed a significant capacity to modulate certain immune system, and thus can be used as an amazing health building supplement which stimulates immune system to fight against infection. The investigated oil also showed that olive oil has favourable effect in inhibiting the histopathological changes of the liver and kidney in salmonella dosed rat hence
indicating the fact that the oil is non-toxic. Therefore, the oil has been proven as a non-toxic immune modulator that should be encouraged in our daily diet.

REFERENCES

2. Covas, M.I., Torre, K., Farre-Albaladejo, M., Kaikkonen, J., Fito, M., Lopez-Sabater, C.,

