GENERATION OF BIOELECTRICITY AND SIMULTANEOUS TREATMENT OF WASTE WATER USING MICROBIAL FUEL CELLS (MFC)

Running title: BIOELECTRICITY FROM MICROBIAL FUEL CELLS

ABSTRACT

This era is definitely an era of renewable energy generated from resources which are naturally replenished on a human time scale. This study provides information that initiates to reveal correct mechanisms involved with electron transfer to microbial fuel cell (MFC) electrodes using two bacterial isolates. The MFC performance was successfully carried out in *P. aeruginosa* and *E. coli* microbial inoculum for 30 days. Biochemical analysis confirms the purity of the respective microorganisms. The comparative physical parameters showed *E. coli* as an efficient source of degradation than *P. aeruginosa* in Lake water for Biological oxygen demand (1.6mg/lt), Total dissolved solids(920mg/lt), Chemical oxygen demand(64mg/lt) and Dissolved oxygen(0.8mg/lt) with respect to apartment & STP waste. In contrast, the efficiency of salt degradation like nitrate(570mg/lt), chloride(92.49mg/lt), sulphate(1000mg/lt) and phosphates(3200mg/lt) calcium(0.56mg/lt) was shown more by *P. aeruginosa* compared to *E. coli* in STP than Lake and apartment waste. Further the efficiency of microbes in degradation of waste materials and production of electricity was statistically proven with ANOVA showing the best voltage production in two samples by *P. aeruginosa* (419.8 mV and 380.7 mV) in lake water and apartment samples respectively. Similarly, the third sample collected from sewage treatment plant (STP) showed the maximum volt efficiency of 344.16 mV by *E. coli*.

Keywords: (Renewable energy, Bacteria, E.coli, P.aeruginosa, Biodegradation, Electricity, Microbial fuel cell)

1. INTRODUCTION

Energy calamity in India is rising each year, as there is constant accility in the price of fuels and also due to depletion of fossil fuels to a larger level. The demand for an alternative fuel has erupted extensive research in discovering a potential, economical, and reusable source for energy manufacturers. For constructing a sustainable world we
require to minimize the expenditure of fossil fuels as well as the pollution generated. These two aims can be accomplished all together by treating the waste water. Industrial waste, agricultural waste, and household waste are ideal substrates for energy productions as they are rich in organic contents.

Microbial fuel cells (MFCs) have emerged, in recent years, as a promising yet challenging technology. MFCs are the major type of bio-electrochemical systems (BESs) which convert biomass spontaneously into electricity through the metabolic activity of the microorganisms. MFC is considered to be a promising sustainable technology to meet increasing energy needs, especially using waste water as substrates, which can generate electricity and accomplish waste water treatment simultaneously. In general, an MFC functions same as a fuel cell acts for, and is developed on its fuel cell based principle, the difference here is, that the reactions are catalyzed by the microorganism and the fuel is, the growth medium and the substrate (Tyagi et al, 2012). The choice of substrate can be made by the process being involved (waste water utilization, type of microorganism, etc.)

Electricity has been generated in MFCs from various organic compounds including carbohydrates, proteins and fatty acids (Cheng and Logan, 2011; Pant D, 2010). One of the greatest advantages of MFCs over conventional fuel cells like hydrogen and methanol fuel cell is that a diverse range of organic material can be used as fuels (Logan, et al 2006). An MFC is a device that converts chemical energy into electrical energy with the aid of microorganisms (Pandey et al., 2011). The fact that bacteria can oxidize the substrates to produce electricity makes MFCs an ideal solution for wastewater treatment and domestic energy production (Schwartz, 2007).

An MFC consists of anode and cathode separated by a cation-specific membrane. Microbes in the anode oxidize fuel where bacteria gain energy for metabolism by transferring electrons from an electron donor, such as glucose or acetate to an electron acceptor such as oxygen and the resulting electrons and protons are transferred to cathode through the circuit and the membrane respectively. Electrons and protons are consumed in the cathode, reducing oxidant usually oxygen. The electrons obtained from this oxidation are transferred into anode chamber where they get departed through an electrical circuit before entering into cathode region (Uma et al., 2016). Since the microbial cells are electrochemically inactive due to the nonconductive cell surface structure, mediators are employed to facilitate electron transfer from the microbial cells to the anode in MFCs. Production of electrical energy using microorganisms through MFC’s is one such renewable and sustainable technology that is considered to be one of the
most efficient (HaoYu et al., 2007; Salgado, 2009) and carbon neutral energy sources (Lovley, 2006).

MFC can be best defined as a fuel cell where microbes act as catalyst in degrading the organic content to produce electricity. It is a device that straight away converts microbial metabolic or enzyme catalytic energy into electricity by using usual electrochemical technology (Allen and Bernetto, 1993). All the microbes are not equally efficient in generating potential difference. Hence, the current investigation was focused to compare two electrochemically active microorganisms for their electrogenic properties and to study their degradation capacity in sewage samples. This in turn will combat the excess environmental burdens and helps in developing environmentally safe eco-friendly method.

2. MATERIALS AND METHOD:

2.1 WATER COLLECTION:

Wastewater was collected from three different places in and around Hebbal region of Bangalore. (1) apartment waste; (2) lake water; and (3) secondary treatment plant waste.

2.2 CONSTRUCTION OF THE MFC SETUP

PREPARATION OF SALT BRIDGE: For the preparation of salt bridge, a water solution containing concentrations of 3% sodium chloride and 1.6% agar was autoclaved and poured into PVC pipe of length 10 cm and diameter 22.2 mm covered at one end with polythene (Pranab et al., 2010). The setup was thereafter allowed to cool for nearly 2 hrs inside high efficiency particulate air filter. The salt bridges were thus ready for use (Fig 1).

![Fig 1: Preparation of salt bridge](image)

DOUBLE CHAMBER SETUP
The setup consisted of two reagent bottles made of plastic. The two were connected by making an opening on one side of each bottle such that the salt bridge could be fitted into them.

The corners of the openings were sealed with M-seal to ensure that the apparatus was made completely leak proof (Fig 2).

The three distinct anode chambers were filled with 500 ml of apartment waste, lake water, STP sample waste water, and 5 ml of *E. coli* culture was inoculated along with methylene blue as electron mediator respectively. Similarly, with the other set of samples *P. aeroginosa* was inoculated. The cathode chambers were filled with 500 ml of phosphate buffer to the three sets of samples with pH ≥ 7. Clean graphite electrodes (extracted from 1.5 V batteries) were coiled with copper wire and introduced into the chambers. The setup was left for 25 days under anaerobic conditions. (Supriya Kumari *et al.*, 2015)

Cathode chambers were made equivalent of the oxygen sink. The solution used was an oxidizing agent that would pick up the electrons at the cathode. Potassium ferricyanide was used as an oxidizing agent which was added to the cathode to accept electrons. Ferricyanide has a fairly positive potential compared to the organic matter in the anode and helps to drive the flow of electrons. The setup was kept for 30 days with intermittent addition of 3 ml of inoculum to the respective bottles after every 6 days.

Fig 2: Construction of double chamber setup
2.3 DEVELOPMENT OF PURE MICROBIAL CULTURE

- Isolation and identification of *E. coli* and *P. aeruginosa* was performed by standard Gram staining method.

2.4 PRE AND POST WATER ANALYSIS TREATMENT: Pre and post treatment of water analysis was carried out by determination of pH, dissolved oxygen, biological oxygen demand, chemical oxygen demand, total dissolved solids, calcium estimation, phosphate estimation, sulphate estimation, chloride estimation, and nitrate estimation (Byung *et al.*, 2006).

2.5. ELECTRICAL MEASUREMENT

The voltage readings were taken in a multimeter and then converted into current. Current \(I_{\text{mA}} \) was measured at an external resistance \(R_{\Omega} \) from the microbial fuel cell.

2.6. STATISTICAL ANALYSIS:

The statistical significance was determined by one-way analysis of variance (ANOVA) to determine if the data obtained were significantly varied from one another. Statistical significance between different microorganisms (*E.coli* and *P.aeruginosa*) on three different samples (lake water, apartment waste and STP sample) was determined. \(P \) value of <0.05 was considered significant.

4. RESULTS AND DISCUSSION

The present research work entitled “*Generation of Bioelectricity and Simultaneous Treatment of Waste Water Using Microbial Fuel Cells (MFC)*” was carried out at Indian Academy Degree College, Centre for Research and PG studies, Bangalore.

4.1. ISOLATION AND IDENTIFICATION OF MICRO-ORGANISMS: *Escherichia coli* was isolated from the sewage sample (collected near Indian academy degree college Bangalore) using Eosin Methylene Blue Agar medium and *P.aeruginosa* were isolated using *P.aeruginosa* isolation agar medium. The given micro-organisms were identified by performing Gram staining. Further the conformity of the identified micro-organisms was tested at the biochemical level. On the basis of morphological, cultural, and biochemical characteristics, the isolated *E. coli* bacteria was Gram negative in nature and showed positive response to catalase, indole, MR test and showed negative results for oxidase,
VP, and urease test. However, \textit{P. aeruginosa} bacteria showed positive response to catalase test, oxidase, test and showed negative response for indole, MR test, and VP test. These results are in consent with the work reported by Priya Iyer \textit{et al.} (2013).

4.2. IMPACT OF MFC ON WASTEWATER QUALITY

To check the efficiency of microbes certain physical analyses of three different samples \textit{lake Water, apartment waste, STP} were carried out before and after treatment in MFC (with microbial inoculum). The results \textbf{analysed indicate that} \textit{E. coli} was well performed in treating all three samples by the \textbf{reduction in the BOD, TDS, COD, DO and CALCIUM levels}. The lake water, apartment waste, and STP samples are all rich in great biomass sources (organic matters) for MFCs (Suzuki \textit{et al}, 1978; Oh and Logan, 2005; Min \textit{et al}, 2005 and Zuo \textit{et al}, 2006). Liu and Logan, \textit{et al} 2004 suggested the vital role of the chamber setup (double) that greatly influences the COD level of wastewater. This setup removes up to 80% of COD present in water sample. The present study showed that the role of microorganisms \textit{(E. coli)} is another added feature to convert rich organic matter into generation of electricity by reducing concentration of COD, BOD, and DO. This is in consent with the work done by Mercy \textit{et al}, 2012. Further, there is an important role of formation of biofilm in the MFC setup in degradation of waste. It was found that the reduction of dissolved solids increased with the increase in biofilm concentration (Hampannavar \textit{et al}, 2011). The study revealed the formation of increased biofilm in \textit{E.coli} cultures compared to \textit{P.aeruginosa}. The calcium removal capacity with respect to \textit{E.coli} and \textit{P.aeruginosa} in MFCs is not reported in the literature, and further investigations are necessary to confirm the mechanism behind the nitrogen removal and its effect on overall power production in the MFC. But in case of other parameters like NITRATE, CHLORIDE, SULPHATE, PHOSPHATE estimations, \textit{P.aeruginosa} performed efficiently in reducing these amounts in samples. Since \textit{P.aeruginosa} is a sulphide oxidizing microorganism it has been reported that they are efficient anaerobic microorganisms which are involved in reducing the concentration of sulphate in the samples (Dambe, \textit{et al}, 2005). Sulphate reduction in an MFC fed with carbohydrates has been described previously (Rabaey, \textit{et al}, 2004). According to Vanita Roshan Nimje \textit{et al} (2012), as a result of substrate oxidation, \textbf{liberated electrons gradually decrease the level of nitrate but the role of microbes was} reducing nitrates was not described earlier.

\textbf{Table 1: Comparative analysis of physical parameters of 3 samples before and after treatment by isolated microorganisms}
<table>
<thead>
<tr>
<th>Physical parameters</th>
<th>Lake water</th>
<th>Apartment waste</th>
<th>STP waste</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration before treatment (mg/lt)</td>
<td>Concentration after treatment (mg/lt)</td>
<td>Concentration before treatment (mg/lt)</td>
<td>Concentration after treatment (mg/lt)</td>
</tr>
<tr>
<td>E.coli</td>
<td>P.aeruginosa</td>
<td>E.coli</td>
<td>P.aeruginosa</td>
</tr>
<tr>
<td>PH</td>
<td>8.6</td>
<td>8.3</td>
<td>7.4</td>
</tr>
<tr>
<td>BOD</td>
<td>3.2mg/Lt</td>
<td>1.6mg/Lt</td>
<td>2.4mg/Lt</td>
</tr>
<tr>
<td>TDS</td>
<td>20400mg/Lt</td>
<td>920mg/Lt</td>
<td>1080mg/Lt</td>
</tr>
<tr>
<td>COD</td>
<td>136mg/Lt</td>
<td>64mg/Lt</td>
<td>92mg/Lt</td>
</tr>
<tr>
<td>DO</td>
<td>2mg/Lt</td>
<td>0.8mg/Lt</td>
<td>1.2mg/Lt</td>
</tr>
<tr>
<td>NITRATE</td>
<td>390mg/Lt</td>
<td>150mg/Lt</td>
<td>90mg/Lt</td>
</tr>
<tr>
<td>CHLORIDE</td>
<td>192.4mg/Lt</td>
<td>72.4mg/Lt</td>
<td>49.9mg/Lt</td>
</tr>
<tr>
<td>SULPHATE</td>
<td>1800mg/Lt</td>
<td>500mg/Lt</td>
<td>300mg/Lt</td>
</tr>
<tr>
<td>PHOSPHATE</td>
<td>6400mg/Lt</td>
<td>4200mg/Lt</td>
<td>4000mg/Lt</td>
</tr>
<tr>
<td>CALCIUM</td>
<td>1.52mg/Lt</td>
<td>0.32mg/Lt</td>
<td>0.72mg/Lt</td>
</tr>
</tbody>
</table>

4.3 PERFORMANCE OF MFC

The apparatus was set up with the combination of three different samples with respective microorganisms i.e., lake water with *E.coli* and lake water with *P.aeruginosa* followed by apartment waste with *E.coli* and apartment waste with *P.aeruginosa* finally, STP sample with *E.coli* and STP sample with *P.aeruginosa*. The voltage in mV was checked with the help of multimeter in both control as well as in the samples with
respective inoculum for about 30 days at a time point per day the readings were taken for two times (10.00 AM and 4.00 PM) under room temperature.

The voltage reading in the control samples decreased gradually as the day's move on approximately till the day 12 the voltage was obtained, later the values were found to be as 0.00mV. Simultaneously the voltage (mV) obtained in the samples treated with the respective microorganisms (E.coli and P.aeruginosa) initially showed higher values in the E.coli containing samples than P.aeruginosa.

The voltage obtained on intermittent addition of inoculum was carried out for efficient voltage result. 3 ml of inoculum was added for every 6 days into the respective samples in the MFC setup as per the values the voltage was found to decrease gradually but when the inoculum was reloaded into the medium the value was found to be increasing. The cycle was carried out for 30days.

The voltage (mV) was converted into current (amperes) and was calculated as follows:

\[V = IR \]

where, I is Current (mA) and R the resistance (Ω).

Graph 1: Effect of microbial inoculum in generation of voltage (mV) against samples compared with control.

The comparative results of microbial efficiency to generate the best voltage compared to control (GRAPH 1) was seen best in lake water by P.aeruginosa (419.8mV) compared to (131.18mV) in E.coli. The apartment waste sample generated 380.7mV and 231.18mV.
in *P. aeruginosa* and *E. coli* respectively. Which again supports *P. aeruginosa* to be an efficient micro organism.

On the other hand in STP sample, *E. coli* has shown a better voltage (344.16mV) than that of *P. aeruginosa* (251.81mV). Graphical representation was well established to compare the activity of inoculum in different samples (GRAPH 1).

Table 2: Cumulative statistical analysis by One way ANOVA for voltage generated (mV) between treatment vs microbial inoculum. (P≤0.05)

<table>
<thead>
<tr>
<th>SAMPLES</th>
<th>E. coli(mV)</th>
<th>P. aeruginosa(mV)</th>
<th>Fold change</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lake water</td>
<td>131.1833</td>
<td>419.8</td>
<td>3.200102</td>
<td>2.58E-23</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>≤0.05</td>
</tr>
<tr>
<td>Apartment waste</td>
<td>231.1833</td>
<td>380.7167</td>
<td>1.646817</td>
<td>1.89E-07</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>≤0.05</td>
</tr>
<tr>
<td>STP sample</td>
<td>344.1667</td>
<td>251.8167</td>
<td>1.366735</td>
<td>0.005454</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>≤0.05</td>
</tr>
</tbody>
</table>

The control and the treated voltage values for 30 days showed fluctuation in readings upto the maximum level followed by a decline phase. This result supports the generation of high potential during the exponential phase when microbial inoculum was added intermittently for every 6 days. Similar findings were observed by Veer Raghavulu et al, 2011 in *Pseudomonas aeruginosa* and *Escherichia coli* used together as a biocatalyst in substrate degradation.

Further, a high voltage of 419.8 mV and 380.7 mV was observed in lake water and apartment waste samples. These samples were treated by the pure cultures of *P. aeruginosa*. Contrary to this *E. coli* inoculum gave a very low voltage output of 131.18 mV and 231.18 mV in lake water and apartment waste samples respectively. This can be attributed to the fact that *P. aeruginosa* is electrochemically active in nature and *E. coli* electrochemically inactive when added as a pure cultures, while mixed consortia comprises both of them. Hence, electrochemically active nature supports the pumping out of redox powers (H+ and e-) from the outer membrane of biocatalyst.

Similar findings were made by Veer Raghavulu et al, 2011, where higher bio potential was observed with *Pseudomonas aeruginosa* which might be because of its electrochemical nature and the involvement of soluble shuttlers for the redox powers.
In case of STP the voltage was seen high in the *E.coli* treated sample (344.16mV) as compared to that of *P.aeruginosa* (251.81mV). The reason for better efficiency of *E.coli* in STP can be suggested due to the fact that the substrate level for releasing the electrons and oxidizing the organic compound was higher in *E.coli* inoculum than in *Pseudomonas*.

SUMMARY AND CONCLUSION

Under present investigation, bioelectricity was successfully generated from Lake Water, apartment and Secondary Treatment Plant waste water using Microbial Fuel Cell Technology (MFC).

The physical parameters estimated and studied showed *E.coli* as an efficient source of degradation for BOD, TDS, COD and DO in all the three samples. The efficiency of salt degradation (NITRATE, CHLORIDE, SULPHATE AND PHOSPHATES) resulted better in *P.aeruginosa* inoculum.

The electricity generation in lake water was facilitated more by the organism *P.aeruginosa* compared to *E.coli* which was proven statistically. Similarly in apartment waste *P.aeruginosa* has given a best voltage and current but there was slight difference seen in case of STP sample where *E.coli* gave the maximum voltage.

MFC is a promising technology for bioelectricity generation and waste water treatment. Recent research and development and analysis of literature review showed that higher power densities can be obtained from improved MFC designs with the use of cost effective materials. Hence, large scale MFC’s can solve the future energy crisis undoubtedly. More research and development is required for assessing suitability of microorganisms for better efficiency for electricity production. The ultimate achievement in MFCs will be when they can be used solely as a method of renewable energy production.

So the present investigation led to a conclusion that the two suitable microorganisms *E.coli* and *P.aeruginosa* proved to be equally efficient in degrading the waste depending on the source with simultaneous production of electricity. The method adopted was cost effective and efficient at the industry and residential level. Application of microbial fuel cell (MFC) for wastewater treatment could be an attractive alternative to reduce the cost of treatment and generate electricity.
Further, a detail study for this upcoming technology for power generation needs to be studied and developed.

REFERENCES

13. Byung Hong Kim, In Seop Chang, Hyunsoo Moon. (2006); Microbial Fuel Cell-Type Biochemical Oxygen Demand Sensor Bioelectrochemistry Laboratory, Water Environment & Remediation Research Center, Korea Institute of Science and Technology, Hawolgok-dong, Sungpook-ku, Seoul, Korea

22. Christensen W. B., (1946); J. Bacteriology., 52:461.

23. Christy Ann, Research News. (August 31, 2005); the Ohio State University.

34. Gregory KB, Lovely DR. (2005); Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environment science technology, 39:8943-8947.

44. K.Sreema, Hannah ruben and Priya iyer (2013). Microbial fuel cell from polluted pallikaranai water.

52. Katz Eugenii, Andrew N. Shipway and Itamar Willner.(2003); Biochemical fuel cells, in Handbook of Fuel Cells – Fundamentals, Technology and Applications,

67. Marcus, A. K. and B. Rittmann(January 3, 2008); New insights into fuel cell that uses bacteria to generate electricity from waste, News Archive of the Biodesign Institute, Arizona State University.

78. Pant, Deepak, Van Bogaert, Gilbert, Diels, Ludo, Vanbroekhoven, Karolien, (2010); "A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production", Bioresource Technology. 101:1533-1543

98. S. Veer Raghavulu, P.N. Sarma and S. Venkata Mohan. (2010); Comparative bioelectrochemical analysis of Pseudomonas aeruginosa and Escherichia coli with anaerobic consortia as anodic biocatalyst for biofuel cell application. Journal of Applied Microbiology .ISSN 1364-5072

106. Supriya Kumari†, Neelam Mangwani† and Surajit Das*, (2015); Low-voltage producing microbial fuel cell constructs using biofilm-forming marine bacteria; CURRENT SCIENCE, VOL. 108, NO. 5.

110. Tankeshwar acharya (January 24, 2014) in biochemical tests in microbiology.

122. Volkov A. G. and D. W. (1996); Deamer, Liquid/Liquid Interface Theory and Methods, CRC, Boca Raton, FL,

