CRITICAL ANALYSIS OF POLYCYCLIC AROMATIC HYDROCARBONS RING SIZE DISTRIBUTION IN MARSHY SOILS AND SEDIMENTS IN WARRI CITY AND ITS ENVIRONS, SOUTHERN NIGERIA

I.E. AGBOZU1+, A.V. BAYOWA2, O.E. OGHAMA1

1Department of Environmental Management & Toxicology, Federal University of Petroleum Resources Effurun, PMB 1221, Effurun, Delta State, Nigeria

2College of Agriculture and Environmental Science, University of South Africa, Pretoria

+Corresponding Author: iwekumo@yahoo.co.uk

Abstract
This study was carried out to analyze the ring size distribution of Polycyclic Aromatic Hydrocarbons (PAHs) in marshy soils and sediment samples in Warri City, Southern Nigeria. The samples were collected during dry and rainy seasons from four locations within Warri and a control location in Agbarho, 20km away. Levels of 16 priority PAHs listed in United States Environmental Protection Agency (USEPA) were determined using Gas Chromatography coupled with Flame Ionization detector (GC-FID). This study was carried from January to March and June to August, representing the dry and wet seasons respectively. It was observed that PAHs concentration was generally higher in dry than rainy seasons for soil and sediment samples. Furthermore, ring size analysis revealed that for soils, two to three-ringed as well as four-ringed PAHs were more predominant in Ugboroke location, five-ringed PAHs in Okotie and six-ringed PAHs in Ogunu location. Overall, five-ringed PAHs were more predominant in Okotie location in the dry season. However, for sediments, two to three-ringed as well as four-ringed PAHs were more predominant in Okotie location, five-ringed PAHs in Ogunu and six-ringed PAHs in Ugboroke location. Overall, two to three-ringed PAHs were more predominant in Okotie location in the dry season for sediment samples.

Key Words: PAHs; Sediments; Benzo(a)pyrene; Gas Chromatography; Flame Ionization Detector

INTRODUCTION

Industrialization and urbanization have advanced socio-economic development. As a consequence, a myriad of environmental problems have become prevalent in urban areas, including contamination by polycyclic aromatic hydrocarbons (PAHs) via various pathways [1]. PAHs are a large class of persistent toxic substances (PTS) or persistent organic
compounds (POPs) which are emitted as by-products of virtually every type of combustion technology or biomass burning [2-4].

They generally result from the incomplete combustion of fossil fuels and burning of vegetation and other organic materials [5]. The derivatives from diagenesis of organic matter in anoxic sediments and crude oil seepage are also important PAHs’ sources [6]. PAHs are ubiquitous environmental pollutants and are released into the environments via various routes. They have been largely detected in various environmental media, such as organism [7], atmosphere [8], water [9], soils [10], and sediments [11]. Being potentially hazardous, persistent and prevalent in the environment, efforts have been made to reduce their emission in many countries; for example, 16 of PAHs have been listed as priority control pollutants by USEPA (United States Environmental Protection Agency)[12].

PAHs are resistant to degradation over a long period in different environmental compartments [13, 14]. However, studies have shown that transformation by microorganisms is the major neutralization process of PAHs [15; 16]. Microbial degradation rates vary and generally reduce with increasing temperature, oxygen concentration, number of aromatic rings, and light intensity [14]. Also important in determining the fate and transport of PAHs are the characteristics of the soil environment particularly the soil organic matter (SOM) content, and the competence of the soil microbial community needed to degrade these compounds.

PAHs have been an issue of public concern due to their demonstrated carcinogenic, mutagenic and toxicity properties [17-19]. The prevalent mechanism of PAHs toxicity to invertebrates is narcosis (additive), which results in the degradation of cell membrane [20]. This degradation can result in mild toxic effects or mortality depending upon the quantity and duration of exposure [21]. Photo-activated toxicity, carcinogenicity and teratogenicity have also been reported to occur due to exposure to certain PAHs, (eg, B[a]p). Though soil and sediments act as a major sink for these PTS in the environment, these compounds are soluble in soil and river waters depending on their individual and/or combined physicochemical properties.

The properties of the individual PAHs depend on the number of hydrocarbon rings: PAHs are generally lipophilic, which means they have low solubility in water but highly solubility in fats and oils. Lipophilicity increases with increasing number of rings, i.e. the more rings are present, the more fat-soluble the substance is and the better it accumulates in the fatty tissue of organisms [22]. Also, with increasing number of rings, the water-solubility of the substance decreases. As a result, higher molecular weight (HML) PAHs are generally insoluble in water which limits their mobility in the environment, while some PAHs are soluble and known contaminants in drinking water [22]. Therefore, aqueous solubility of PAHs decreases with increasing molecular mass [24].

Two-ring PAHs, and to a lesser extent three-ring PAHs, are soluble in water, making them more available for biological uptake and degradation[25; 24; 26]. Furthermore, two- to four-ring PAHs volatilize adequately to appear in the atmosphere in gaseous form, although the
physical state of four-ring PAHs can depend on temperature [27; 28]. In contrast, compounds with five or more rings have low solubility in water and low volatility; they are therefore predominantly in solid form, bound to particulate air pollution, soils, or sediments[29]. In solid form, these compounds are less accessible for biological uptake or degradation, increasing their persistence in the environment [24; 29]. With increased environmental persistence, is increased toxicity with the most significant endpoint being cancer [30]. The low-molecular-weight PAHs (containing two or three rings) are acutely toxic while the high-molecular-weight PAHs (containing four or more rings) are largely considered as genotoxic [16]. Furthermore, low molecular weight PAHs (two- to four-rings) thrive as co-carcinogens during the promotional stage of cancer [31]; and because these PAHs are prevalent in the environment, they pose a significant risk to human health at the promotional phases of cancer. Higher molecular weight PAHs such as chryseene, benzo(a)anthracene, dibenzo(a,h)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene and indeno(1,2,3-cd)pyrene have been reported as potential human carcinogens by the International Agency for Research on Cancer (IARC) and the United State Environmental Protection Agency (USEPA) [32].

Therefore, the persistence, stability, resistance toward biodegradation and carcinogenic index of PAHs generally increase as the number of aromatic rings increases, while volatility tends to decrease as molecular weight increases [33].

Warri is a major hub of the oil and gas industry in Southern Nigeria. Given the numbers of oil and gas wells and complex transportation pipelines within Warri, concentration levels of PAHs in soils and sediments of the city must be quantified to evaluate their ecological impacts. Considering that PAHs account for 10-45% of total hydrocarbons in crude oil [34, 35], and the importance of this region to fisheries stock and other edible aquatic lives, it is also important to understand the distribution of PAHs in this area. Unfortunately, there is a paucity of data for PAH concentrations and distribution in soil and sediments in Warri City. This study, therefore, is essential to determine the ring-size distribution of PAHs in soil and sediments in the city taking cognizance of the relationship between PAH ring-sizes and solubility or toxicity. As PAH ring-size increases, the solubility decreases and toxicity increases. Higher molecular weight PAHs are hydrophobic and have less solubility in water hence they tend to settle in soil and sediments. In addition, this study is also necessary to provide PAHs baseline data for the city. Having this type of baseline information available will be critical to developing effective responses to future potential disasters such as oil spills and oil-related disasters.

MATERIALS AND METHOD

Study Area

This study was carried out in Warri located between latitude 5°31’N and longitude 5°45’E. The city, also known as ‘Oil City’, is one of the cosmopolitan cities and a major hub of petroleum activities and businesses in Southern Nigeria. It is a commercial capital city in
Delta State, in the oil rich Niger Delta region, comprising originally of Itsekiri, Urhobo and Ijaw people.

The region experiences moderate rainfall and humidity for most parts of the year. The area is characterized by tropical equatorial climate with mean annual temperature of 32.8°C and annual rainfall amount of 2673.8 mm. There are high temperatures of 36°C and 37°C. The natural vegetation is a rainforest with swamp forest in some areas. The forest is rich in timber trees, palm trees, as well as fruit trees.

As a result of the unique location of Warri at the bank of the Niger Delta, there are rivers, creeks, ponds and wetland areas around the city hence most places in the city are swampy areas and marshes. Majority of the people especially those living close to the waters are either fishermen/women or take fishing as a hobby. Warri River which is one of the most important coastal rivers of the Niger Delta distributed in various tributaries around the city and beyond is responsible for the marshy soil and swampy area that characterise the city [36].

Fig. 1: GIS based Map of Study Area

The coordinates of the locations of the sample in the study area are as shown in Table 1 below:

Table 1: Showing Sample Locations and their GPS Coordinates

<table>
<thead>
<tr>
<th>Sampling Location</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Northing</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sample Locations

Five (5) areas were strategically chosen, four within Warri and one outside Warri; the one outside Warri was chosen as the control.

1. Ekpan – NNPC Complex area

This site is along the Ekpan bridge express, after the NNPC staff quarters. It is located between longitude 05°33′13.5″N and latitude 005°44′35.8″E. There is a company opposite the sampling point and a church beside it. The exact sampling point is a river under the bridge. One major characteristics of this location is that there are not much human population here but the place is close to NNPC/Ekpan highway a major busy highway. The river could be a drain receiving waste water from neighbouring residential areas and industry.

2. Ugboroke community (Kingdom Development Centre)

This location can be said to describe the natural vegetation of Warri which is of rainforest with swamp forest in some areas; the forest in Warri is rich in timber trees, palm trees, as well as fruit trees. Ugboroke community is however one of the emerging areas in Warri and developmental features such as roads, modern building structures are taking over the forest. The community is a densely populated area, made up of local indigenous people as well as others that have come to live within the community. One thing peculiar to this location is that, there are clusters of old, native houses, modern/semi-modern residential houses, small and medium scale businesses, factories, and companies, agricultural activities (poultry, fishing amongst others).

The sampling point is a pond at the back of a church (kingdom Development Centre). It is located between longitude 05°32′37.6″N and latitude 005°44′50.5″E. This point is actually like a wetland that is flooded most part of the year. Plantain trees, other trees, shrubs and plants are typical of this environment.

3. Ogunu (SPDC Industrial Area)

This site is located between longitude 05°31′48.1″N and latitude 005°42′44.9″E, outside Shell Petroleum Development Company SPDC residential, recreational and mild administrative area. It is a local community that has been upgraded by virtue of the presence of the multinational companies in the area. Apart from SPDC, Ogunu community play host to, Pan Ocean Oil Company. The people in this community are majorly indigenes with few other non-indigenes. Their occupations are majorly petty trading, fishing, farming or idling.

The exact sampling point is Ogunu River. There are residential houses around and even in or on the river; there is also a local public toilet and a refuse dump close by.
4. Okotie Sawmill, Effurun

This site is located between longitude 05º32’23.3’’N and latitude 005º47’24.0’’E, in the outskirts of Warri, in a place called Effurun. To many people, Effurun is not part of the Warri township but by geographical and political description, Effunrun is part of the larger Warri City and is usually called together as - Effurun Warri. The actual sampling area is a majorly industrial with few residential houses; some of the industries and companies in the area are – Nigeria Bottling Company (Coca Cola) Depot, Phyton Engineering Company, Thermosteel Nigeria Limited, Okotie Plank Sawmill and NISRIN Construction. Okotie Plank Sawmill and NISRIN Construction are just by the river where the sampling was carried out. The sampling point was close to one of the vessels- houseboat constructed by NISRIN.

5. Agbarho River (Control)

Agbarho Community is a town outside Warri; it is along the Ughelli/Port Harcourt highway. The actual sampling site is the Agbarho River, located between longitude 05º35’01.1’’N and latitude 005º50’56.0’’E. Just by the side of this river is an open abattoir and cow meat market; as a result of which there are usually herd of cattle grazing by the side of the river.

Sample Collection and Analysis

Soil and sediments samples from the five sampling points were collected in the year 2012 for six months; three months in the dry season (January – March) and three months in the rainy season (June – August). The samples were collected using stainless steel hand auger and...
The samples were wrapped in aluminium foil and properly preserved by cooling in a refrigerator at (4ºC) before they were taken to the laboratory for analysis. Extraction was done according to the standard reference method employed in PAH analysis, USEPA 8240. 10g of sample was carefully weighed into a dried organic free and chromic acid pre-cleaned extraction bottle. 10g of anhydrous Sodium Sulphate was then added and mixed with a glass rod. 20ml of Hexane : Dichloromethane in the ratio 3:1 (90ml of Hexane and 30ml of Dichloromethane were mixed and prepared in a standard flask) was added to the sample. The sample was then placed in an organic flask shaker at 500osc/min for 30mins. The extract was filtered. The sample was then left in the extraction bottle at laboratory room temperature to concentrate for a minimum of 24hours until about 2ml of concentrated sample was left in the extraction bottle. This was followed by fractionation in activated alumina (neutral) column to separate into aliphatic and aromatic fractions using n-Hexane and Dichloromethane respectively. The aromatic fraction was concentrated to approximately 1.0ml using rotary evaporator. The aromatic extract was stored in a dried organic free and chromic acid pre-cleaned glass vials with Teflon rubber caps for analysis. It was refrigerated at -4ºC until analysis. Analysis was carried out using Gas Chromatography (GC) with Flame Ionization Detector (FID). 1µl of the concentrated sample was injected by means of exmire micro syringe through rubber septum into the column. Separation occurs as the vapour constituent partition between the gas and liquid phases. The sample was automatically detected as it emerges from the column by a Flame Ionisation Detector FID. The column used was Rester, 30 m X 0.25 mm X 0.25 mm. Helium (14psi) was used as carrier gas. The column was kept at 45ºC for 2 minutes. It was programmed to 280ºC at the rate of 15ºC/min. The column temperature was further programmed to a final hold at 300ºC at the rate of 10ºC/min. Temperature of the FID and Tij were kept at 340ºC. PAH quantification was carried out by CLARITY-GC interfaced software.

RESULTS AND DISCUSSION

Results

The results of analyses of the sediment and soil samples from the study area are as presented in Tables 2-5 below with their ring size distribution highlighted in Fig 2 and 3. The results including mean and standard deviation are presented for dry and wet/rainy seasons of sampling. The results were read as the detection limit on the gas chromatogram for individual PAHs which were in microgram per litre and these were converted to milligram per kilogram (mg/kg.). The minimum detection limit for GCFID used in the analysis on the chromatogram is 1 x 10⁻³ mg/kg.

Table 2: PAHs Concentrations in Marshy Soil Samples in Warri City in mg/kg
<table>
<thead>
<tr>
<th>PAHs</th>
<th>Ring No.</th>
<th>Sampling Stations (ST)</th>
<th>ST 1 (Ekpan)</th>
<th>ST 2 (Ogunu)</th>
<th>ST 3 (Ugboroke)</th>
<th>ST 4 (Okotie)</th>
<th>Control (Agbarho)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>D</td>
<td>R</td>
<td>D</td>
<td>R</td>
<td>D</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>2</td>
<td>0.09</td>
<td>0</td>
<td>0.484</td>
<td>0</td>
<td>0.017</td>
<td>0.584</td>
</tr>
<tr>
<td>2-methyl naphthalene</td>
<td>2</td>
<td>0</td>
<td>0.016</td>
<td>0.045</td>
<td>0.033</td>
<td>0.561</td>
<td>0</td>
</tr>
<tr>
<td>1-methyl naphthalene</td>
<td>2</td>
<td>0.082</td>
<td>0</td>
<td>0.041</td>
<td>0.049</td>
<td>0.168</td>
<td>0</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>3</td>
<td>0.01</td>
<td>0</td>
<td>0.069</td>
<td>0.027</td>
<td>0</td>
<td>0.0003</td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>3</td>
<td>0.096</td>
<td>0</td>
<td>0.018</td>
<td>0</td>
<td>0.0004</td>
<td>0.1</td>
</tr>
<tr>
<td>Fluorene</td>
<td>3</td>
<td>0.006</td>
<td>0</td>
<td>0.066</td>
<td>0</td>
<td>0</td>
<td>0.082</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>3</td>
<td>0.022</td>
<td>0</td>
<td>0.027</td>
<td>0.094</td>
<td>0.239</td>
<td>0</td>
</tr>
<tr>
<td>Anthracene</td>
<td>3</td>
<td>0</td>
<td>0.011</td>
<td>0.142</td>
<td>0.255</td>
<td>0.292</td>
<td>0</td>
</tr>
<tr>
<td>Pyrene</td>
<td>4</td>
<td>0.17</td>
<td>0</td>
<td>0.244</td>
<td>0</td>
<td>0</td>
<td>0.024</td>
</tr>
<tr>
<td>Chrysene</td>
<td>4</td>
<td>0.11</td>
<td>0</td>
<td>0.102</td>
<td>0</td>
<td>0.033</td>
<td>0.028</td>
</tr>
<tr>
<td>Benzo(a)anthracene</td>
<td>4</td>
<td>0.142</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1.134</td>
<td>0.0964</td>
</tr>
<tr>
<td>Benzo(b)fluoranthrene &Benzo(k) fluorethrene</td>
<td>5</td>
<td>0.286</td>
<td>0</td>
<td>0.11</td>
<td>0.275</td>
<td>0.076</td>
<td>0</td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
<td>5</td>
<td>0.484</td>
<td>0</td>
<td>0.362</td>
<td>0.1</td>
<td>0.318</td>
<td>0</td>
</tr>
<tr>
<td>Indeno(1,2,3-cd)pyrene & dibenzo(a,h)anthracene</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>1.11</td>
<td>0.01</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Benzo(g,h,i)perylene</td>
<td>6</td>
<td>0.66</td>
<td>0</td>
<td>0.479</td>
<td>0.223</td>
<td>0.309</td>
<td>0.07</td>
</tr>
<tr>
<td>Fluoranthrene</td>
<td>4</td>
<td>0.074</td>
<td>0</td>
<td>0</td>
<td>0.181</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>D</td>
<td>R</td>
<td>D</td>
<td>R</td>
<td>D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.226</td>
<td>0.027</td>
<td>3.215</td>
<td>1.331</td>
<td>3.130</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td>0.139</td>
<td>0.002</td>
<td>0.201</td>
<td>0.083</td>
<td>0.196</td>
</tr>
<tr>
<td>Standard deviation</td>
<td></td>
<td></td>
<td>0.189</td>
<td>0.005</td>
<td>0.294</td>
<td>0.097</td>
<td>0.301</td>
</tr>
</tbody>
</table>

Table 3: PAHs Ring Size Distribution in Marshy Soil Samples in Warri City in mg/kg
Fig 2: The distribution pattern of 2–6-ring PAHs in Marshy Soil at different sampling locations

Table 4: PAHs Concentrations in Marshy Sediment Samples in Warri City in mg/kg

<table>
<thead>
<tr>
<th>PAHs</th>
<th>Ring No.</th>
<th>Sampling Stations (ST)</th>
<th>ST 1 (Ekpan)</th>
<th>ST 2 (Ogunu)</th>
<th>ST 3 (Ugboroke)</th>
<th>ST 4 (Okotie)</th>
<th>Control (Agbarho)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>D</td>
<td>R</td>
<td>D</td>
<td>R</td>
<td>D</td>
</tr>
<tr>
<td>Naphthalene</td>
<td>2</td>
<td></td>
<td>0.041</td>
<td>0.211</td>
<td>0.0349</td>
<td>1.091</td>
<td>0.421</td>
</tr>
<tr>
<td>2-methyl naphthalene</td>
<td>2</td>
<td></td>
<td>0.039</td>
<td>0.041</td>
<td>0.0353</td>
<td>0.05</td>
<td>0</td>
</tr>
<tr>
<td>1-methyl naphthalene</td>
<td>2</td>
<td></td>
<td>0.01</td>
<td>0.001</td>
<td>0</td>
<td>0.209</td>
<td>0.18</td>
</tr>
<tr>
<td>Acenaphthylene</td>
<td>3</td>
<td></td>
<td>0.007</td>
<td>0.006</td>
<td>0.076</td>
<td>0.046</td>
<td>0.07</td>
</tr>
<tr>
<td>Acenaphthene</td>
<td>3</td>
<td></td>
<td>0</td>
<td>0.006</td>
<td>0.01</td>
<td>0.004</td>
<td>0.008</td>
</tr>
<tr>
<td>Fluorene</td>
<td>3</td>
<td></td>
<td>0.011</td>
<td>0.057</td>
<td>0.13</td>
<td>0.09</td>
<td>0.131</td>
</tr>
<tr>
<td>Phenanthrene</td>
<td>3</td>
<td></td>
<td>0.191</td>
<td>0</td>
<td>0.07</td>
<td>0.0235</td>
<td>0.245</td>
</tr>
<tr>
<td>Anthracene</td>
<td>3</td>
<td></td>
<td>0.244</td>
<td>0.071</td>
<td>0.093</td>
<td>0.147</td>
<td>0.338</td>
</tr>
<tr>
<td>Pyrene</td>
<td>4</td>
<td></td>
<td>0.209</td>
<td>0.214</td>
<td>0.187</td>
<td>0.513</td>
<td>0.361</td>
</tr>
<tr>
<td>Chrysene</td>
<td>4</td>
<td></td>
<td>0.507</td>
<td>0.49</td>
<td>0.083</td>
<td>0</td>
<td>0.285</td>
</tr>
<tr>
<td>Benzo(a)anthracene</td>
<td>4</td>
<td></td>
<td>0.144</td>
<td>0.452</td>
<td>0.255</td>
<td>0.205</td>
<td>0.572</td>
</tr>
<tr>
<td>Benzo(b)fluoranthrene</td>
<td>5</td>
<td></td>
<td>0.413</td>
<td>0.52</td>
<td>0.193</td>
<td>0.388</td>
<td>0</td>
</tr>
<tr>
<td>Benzo(k)fluoranthrene</td>
<td>5</td>
<td></td>
<td>0</td>
<td>0</td>
<td>1.342</td>
<td>0.216</td>
<td>0.882</td>
</tr>
<tr>
<td>Benzo(a)pyrene</td>
<td>5</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0.196</td>
<td>0.267</td>
<td>0.334</td>
</tr>
<tr>
<td>Indeno(1,2,3-cd)pyrene &</td>
<td>6</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.112</td>
<td>0.753</td>
</tr>
<tr>
<td>dibenzo(a,h)anthracene</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.04</td>
<td>0</td>
</tr>
<tr>
<td>Benzo(g,h,i)perylene</td>
<td>6</td>
<td></td>
<td>0.218</td>
<td>0.112</td>
<td>0.753</td>
<td>1.067</td>
<td>0.147</td>
</tr>
<tr>
<td>Fluoranthrene</td>
<td>4</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0.01</td>
<td>0.04</td>
<td>0</td>
</tr>
</tbody>
</table>

Total: 2.034 1.793 3.972 0.881 2.747 0.364 4.540 3.029 4.179 1.055
Mean: 0.127 0.112 0.248 0.055 0.172 0.023 0.284 0.189 0.261 0.066
Standard deviation: 0.159 0.212 0.353 0.188 0.265 0.062 0.319 0.200 0.317 0.088
Table 5: PAHs Ring Size Distribution in Marshy Sediment Samples in Warri City in mg/kg

<table>
<thead>
<tr>
<th>Ring Size</th>
<th>ST 1 (Ekpan)</th>
<th>ST 2 (Ogunu)</th>
<th>ST 3 (Ugboroke)</th>
<th>ST 4 (Okotie)</th>
<th>Control (Agbarho)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D</td>
<td>R</td>
<td>D</td>
<td>R</td>
<td>D</td>
</tr>
<tr>
<td>2-3 rings</td>
<td>0.543</td>
<td>0.082</td>
<td>0.489</td>
<td>0.881</td>
<td>0.3337</td>
</tr>
<tr>
<td>4-rings</td>
<td>0.86</td>
<td>1.079</td>
<td>0.999</td>
<td>0</td>
<td>0.475</td>
</tr>
<tr>
<td>5-rings</td>
<td>0.413</td>
<td>0.52</td>
<td>1.633</td>
<td>0</td>
<td>0.6174</td>
</tr>
<tr>
<td>6-rings</td>
<td>0.218</td>
<td>0.112</td>
<td>0.851</td>
<td>0</td>
<td>1.0804</td>
</tr>
</tbody>
</table>

Fig 3: The distribution pattern of 2–6-ring PAHs in Marshy Sediments at different sampling locations

Discussion

Occurrence of individual PAHs for Soils and Sediments

Highest total concentration of individual PAHs within Warri was recorded for BaP - benzo(a)pyrene at 3.302mg/kg in soil samples. The highest contributor to the bulk was at Okotie Sawmill; this location is the one characterised with the presence of several industrial activities and about 2.138mg/kg total concentration was detected there in the dry season soil samples. This is similar to the work done by Ana et al. [37] on PAHs contamination of surface waters in Nigeria Coastal Areas. They reported that the concentration of total PAHs in industrialised areas was three times higher than in the less industrialised area. The order of PAHs concentration in soil within Warri is: BaP>BghiP>BaA>Naph>Ind&DbahA>2-M.Naph>BbF>Ant>Pyr>Phenan.
The PAH with lowest concentration in soil in Warri environs is acenaphthalene with a total concentration of 0.018mg/kg found in the rainy season. The order for lower PAHs in soils in Warri environs is Acn<Ind&DbahA<Acp<Chry.

At the control point, PAHs with highest concentration in soil sample was BghiP; it had a total concentration of 1.166mg/kg with the larger amount of 1.039mg/kg detected in the dry season. It is important to note that the control point location has cattle grazing ground, an abattoir and meat market. Therefore, the high concentration of BghiP here could be attributed to the microbial production of the PAH due to microbial activities in the abattoir area. This is similar to the study done by Inengite et al. [38] on PAHs sources in Kolo Creek soil in Niger Delta area of Nigeria where it was found that concentration of BghiP was high near an abattoir. The order of PAHs concentration in soil in decreasing order is BghiP>BbF&BkF>2-Methyl.Naph. Lowest concentration of total PAHs detected at control station for soil for both dry and rainy season is 0.007mg/kg, and the order is Acn≤2Methyl.Naph≤1-Methyl.Naph. Most of the PAHs were not found at all and they include: Phe., Acnptyl.,Ind&DbahA, BaA, and Chry. Those detected only in dry season are: Ant, Fluoren, Acenaphthalene, and 1-Methyl Naph; and those detected only in rainy season are BaP and Fluorantheine.

For sediment samples within Warri environs, PAHs with highest concentration is BaP - benzo(a)Pyrene with a total concentration of 2.803mg/kg and the larger amount of 2.381 mg/kg being found in the dry season. The decreasing order for total PAHs in sediment sample for dry and rainy season is: BaP>BghiP>Ant>Naph>BaA>Pyr>Chyr>BbF&BkF>BaA>Pyr>Naph. The lowest concentration for PAHs in sediments was recorded for acenaptylene – 0.012mg/kg in rainy season and for total PAHs in dry and rainy season of 0.070mg/kg for acenaphthalene. Some PAHs that were below detection level in the rainy season are: naphthalene, 2 methyl naphthalene and Ind &DbahA.

At the control point, highest total concentration of PAHs found in sediment was 1.092mg/kg and the mean was 0.364mg/kg for Indeno(1,2,3-cd)Pyrene&Dibenz(a,h)Anthracene; all this amount was found only in the dry season as the rainy season record was below detection level. The decreasing order for PAHs in sediments here is: Ind&DbahA>BaP>Phe. The PAHs with lowest concentration was fluorene, followed by 1methyl naphthalene, naphthalene and phenanthrene. Acenaphthalene was below detection level in this location while fluoranthene and chrysene were only below detection level in the dry season. Also, Ind&DbahA, Benzo(a)anthracene, Pyrene Anthracene and Acenaptylene were below detection level in the rainy season.

For Soil samples, the highest total concentration of individual PAH was recorded for benzo(a)pyrene with 3.302mg/kg in the dry season while the lowest was Fluorantheine with 0.074mg/kg. In the rainy season, highest total concentration of individual PAH was recorded
for benzo(b)fluoranthene and benzo(k)fluoranthene at 0.343mg/kg while the lowest was Acenaphthene with 0.019mg/kg.

For Sediments, the highest total concentration of individual PAH was recorded for benzo(a)pyrene with 2.381mg/kg in the dry season while the lowest was Acenaphthene with 0.036mg/kg. In the rainy season, highest total concentration of individual PAH was recorded for Anthracene at 1.515mg/kg while the lowest was Acenaphthylene with 0.012mg/kg; while Naphthalene and 2-methylnaphthalene were not detected.

Ring Size Analysis

Two to three -ringed PAHs

In Warri environs and at the control point, two and three ringed PAHs were found predominantly in the dry season for both soils and sediments samples[39]. Naphthalene, 2-methyl naphthalene and 1-methyl naphthalene were the two-ringed PAHs analysed in this study. The essence of analysing the methyl form of naphthalene is because of the ease of solubility and disintegration of fewer ringed PAHs especially in aqueous solution, which could make them converted into other forms such as methylated form and therefore not detectable as naphthalene [40]. It has also been found that methylated form of certain organic compounds could be more harmful than the parent compound [40], hence, the need to analyse methyl forms.

Within Warri environs, anthracene and phenanthrene were the most persistent of the three rings. Although anthracene was the most persistent, being more distributed in all the locations, yet phenanthrene appeared more in quantity at some locations and has overall more appearance. At the control point, phenanthrene was the most persistent three-ringed and it was found only in sediment samples predominantly in the dry season. Generally, the two to three rings were found majorly in the dry season and almost absent in the rainy season[39]. This is similar to an earlier done by Inengite et al. [38]. Higher ringed PAHs were found to predominate in the rainy season. The authors attributed it to heavy rains, since the solubility of the PAHs is related to number of rings [38]. Their submission is corroborated by the work done by Karlsson and Viklander [41] in which it was reported that the more rings the less soluble; which indicates that the fewer rings were more soluble.

In the marshy soil samples (Fig 2), the two to three-ringed PAHs were more predominant in Ugboroke sample location in the dry season with the least concentration recorded in same location in the rainy season while in the marshy sediment samples (Fig 3), they were more predominant in Okotie sample location in the dry season while Ogunu had the least concentration in the rainy season.

Four -ringed PAHs

The most persistent four-ringed within Warri for both soil and sediment is pyrene. It occurred most in the dry season and more in the sediments than soil samples at Okotie Sawmill. Also,
it was found in the dry season in both soil and sediment samples at every location except at Ugboroke where it was not found in the soil sample throughout the dry season though it was found once in early rainy season (June) at a value of 0.024mg/kg. The highest mean value found for Pyrene was in sediments in dry season at Okotie sawmill, Warri and it was 0.171mg/kg. The least persistent four-ringed is fluoranthene and it was found more in the rainy season. However, it was not found at all in Ugboroke, though all the other four-ringed – chrysene, pyrene and benz(a)anthracene were found with benz(a)anthracene occurring most. At the control point, Pyrene was also the most persistent four-ringed and a mean value of 0.062mg/kg was found in sediments samples in dry season and it was below detection limits in the rainy season[39].

The order of persistence of four-ringed PAHs within Warri for soil and sediment is: Pyrene>Benz(a)anthracene>Chrysene>Fluoranthene; while the order outside Warri is Pyrene>Benz(a)anthracene>Fluoranthene>Chrysene.

In the marshy soil samples (Fig 2), the four-ringed PAHs was more predominant in Ugboroke sample location in the dry season with the minimum concentration recorded in Ekpan location in the rainy season while in the marshy sediment samples (Fig 3), they were more predominant in Okotie sample location in the dry season with minimum concentrations in both Ogunu and Ugboroke locations in the rainy season.

Five-ringed PAHs
Five-ringed benzo(b)fluoranthene was the most persistent five-ringed and overall most persistent PAHs within Warri. It occurred most in Ekpan and it was more in the sediments at a mean value of 0.137mg/kg in the dry season and 0.173mg/kg in rainy season, than soils sample which was 0.143mg/kg in dry season. However, it was found below detection limits in soils samples at this location in the rainy season. Five-ringed benzo(a)pyrene was found only once in soil sample in the dry season at Ekpan, but a total of 2.138mg/kg and mean value 1.069mg/kg was found in soil samples at Okotie sawmill in dry season. This was the highest value for single PAHs compound at a particular location in this study. At the control point, benzo(b)fluoranthene was also more persistent, despite this, benzo(a)pyrene had the highest total concentration of 0.779mg/kg and mean value of 0.259mg/kg for five-ringed in the dry season for sediment samples[39].

In the marshy soil samples (Fig 2), the five-ringed was more predominant in Okotie location in the dry season while Ekpan and Ugboroke locations had the least value in the rainy season while in the marshy sediment samples (Fig 3), they were more predominant in Ogunu location in the dry season with Ogunu and Ugboroke locations having the least concentrations in the rainy seasons.

Six-ringed PAHs
Six-ringed PAHs Indeno 1,2,3-cd pyrene and Dibenzo (a,h)anthracene (which were analysed as one compound and to be represented in this study as ind and DbahA) was the least
persistent six-ringed and overall least persistent PAHs found within Warri. It was below detection level in soil samples at Ugboroke and found only in the dry season for the sediment samples. At Ogunu, it was found unusually high with a total of 1.110mg/kg and mean value of 0.555mg/kg in soils in the dry season. And only total of 0.010mg/kg was found in the soils samples at the same location in late rainy season. While in the sediment only total of 0.196mg/kg and mean value of 0.065mg/kg of the six ringed ind and DbahA was found in the dry season and this was absent in the rainy season. Ind and DbahA was below detection limit in Ekpan soils and sediment samples throughout the sampling period. However, at the control point, a high total concentration of 1.092mg/kg and mean value of 0.364mg/kg was found in the sediment in dry season but it was not found in the wet season. The values for six ringed Ind and DbahA was below detection limit in soils samples[39].

However, Benzo(ghi)Perylene - BghiP which was the most persistent six-ringed recorded in the study area – Warri was found in all the locations; with highest values detected for sediment samples in the dry season. Ugboroke had the highest total concentration of 1.067mg/kg and mean value of 0.355mg/kg in its sediments for BghiP, in the dry season. This is followed by a total value of 0.753mg/kg and mean level of 0.251mg/kg in sediments samples from Ogunu in the dry season. BghiP was absent in Ogunu sediments in rainy season and the lowest detectable total value of 0.070mg/kg and mean 0.023mg/kg was found in Ugboroke soil. At the control point, BghiP was also the most persistent and had its highest total concentration of 1.039mg/kg and mean 0.519mg/kg in soil in dry season, but was present in low total concentration of approximately 0.202mg/kg and mean 0.067mg/kg in sediments[39].

In the marshy soil samples (Fig 2), the six-ringed PAHs had the maximum value in the control location while Ekpan had the least concentration in the rainy season while in the marshy sediment samples (Fig 3), they were more predominant in the dry season in Ugboroke location with Ogunu location having the least concentrations in the rainy season.

In summary, the composition pattern of PAHs by ring size in marshy soil in the study areas is shown in Fig. 2. As shown in Fig. 2, 5-ring PAHs are most abundant. 2-3 ring PAHs take second place followed by 6-ring PAHs and lastly 4-ring PAHs. In the study carried out by Li et al. [42], the PAHs with 4–6 rings composed the majority of PAHs in soil samples while PAHs with 2–3 rings only accounted for 24% of the total PAHs on average. Furthermore, Vane et al. [43] observed that soils in Greater London, UK were dominated by 4–6 ring PAHs.

In the same vein, the composition pattern of PAHs by ring size in the marshy sediments in the study areas is shown in Fig. 3. As shown in Fig. 3, 2-3-ring PAHs are most abundant, which is similar to the study carried out by Wang et al. [44] who observed that 2-ring PAHs was the most dominant of the total PAH concentrations in the river plume sediment samples in Yangtze River Estuary, China. However, these results are inconsistent with some other
observations [45; 46]. 5-ring PAHs take second place followed by 4-ring PAHs and lastly 6-
ring PAHs. This is dissimilar to the work done by Yan et al. [47] who observed 4-ring PAHs
to be most abundant in the sediments of Daya Bay, South China.

Evaluation of the Effects of PAHs on Man

Although this study is majorly to determine the analyse the ring size distribution of PAHs in
soils and sediments within the study area, an extension to the evaluation of the effects on man
is attempted because man is the ultimate consumer in the food chain and would bear the
consequences of the presence of these harmful pollutants in the environmental segments.

As earlier stated, most of the places in Warri are swampy and marshy and most of the people
especially those living close to the waters are either professional fishermen/women or fish as
a hobby. The observed PAHs concentration (4.840mg/kg) in sediment samples was above
the critical level of 4mg/kg recommended by WHO [48] for soils and sediments. PAHs in
aquatic environment have been found to be capable of attaching or bioconcentrating in
aquatic organisms, mostly bivalve molluscs (such as mussels Mytilus edulis) and oysters of
the genera (Ostrea and Crassastrea) and fish as well as other aquatic organisms with highly
permeable filtering gills [49]. When man consumes these aquatic organisms as food, they
become at risk to the negative effects of these harmful pollutants. According to WHO [48],
man is mainly exposed to PAHs from food and ambient and indoor air that have been
polluted with PAHs. The PAHs levels in soil samples (3.634mg/kg) in the study area was
though lower than the WHO critical level of 4mg/kg, yet even at this concentration may be
considered to be harmful since PAHs in soil is partly a deposition from the atmosphere, and
soil and sediments are regarded as good environmental sink that contain about 90% of these
compounds with longer half-life than the atmosphere or in plants [50].

When these harmful compounds are inhaled or ingested by man they could go through
harmful metabolism. Although extensive metabolism of PAHs compounds done through
animal studies have shown that food chain bio-magnification of the compounds does not
appear to be significant [51], yet evidences exist that PAHs are enzymatically converted to
highly reactive metabolites that bind covalently to macromolecules such as DNA and result
in mutagenesis and carcinogenesis in experimental animals [52].

CONCLUSION

The ring size distribution of Polycyclic Aromatic Hydrocarbons (PAHs) in marshy soils and
sediment samples in Warri City, Southern Nigeria were examined in this study. The two-
ringed PAHs analysed were naphthalene, 2-methyl naphthalene and 1-methyl naphthalene
while the three-ringed PAHs were acenaphthylene, acenaphthene, fluorine, anthracene and
phenanthrene. The four-ringed PAHs were fluoranthene, chrysene, pyrene and
benzo(a)anthracene. The five-ringed PAHs were benzo(a)pyrene, benzo(b)fluoranthene and
benzo(k)fluoranthrene while the six-ringed PAHs were indeno(1,2,3-c,d)pyrene and
dibenzo(a,h)anthracene (which were analysed as one compound in this study), and benzog(h,i)perylenes.

In the marshy soil samples, the ring size distribution is as follows; 5-ring PAHs > 2-3 ring PAHs > 6-ring PAHs > 4-ring PAHs. Considering the dominance of 5-ring PAHs; high lipophilicity, low water solubility and low volatility PAHs are prevalent in the study area. As a result, they are predominantly in solid state, decreasing their mobility and increasing their persistence in the environment. They are also more toxic with increased carcinogenic, mutagenic and teratogenic potentials.

In the marshy sediment samples, the ring size distribution is as follows; 2 to 3-ring PAHs > 5-ring PAHs > 4-ring PAHs > 6-ring PAHs. The dominance of 2 to 3-ring PAHs indicates that the PAHs found in the study area may have low lipophilicity, high water solubility and high volatility. As a consequence of their high volatility, they may readily appear in the atmosphere predominantly in gaseous form. Furthermore, being highly soluble in water, they are readily available for biological uptake and degradation. Hence, they are less toxic with decreased carcinogenic, mutagenic and teratogenic potential.

REFERENCES

