Improvement of flowering, yield and quality attributes in acid lime (*Citrus aurantifolia* Swingle) by exogenous application of plant nutrition

Abstract

A field experiment was conducted at south farm, of Vanavarayar Institute of Agriculture, Manakkadavu, Pollachi, Tamil Nadu. The experiment was laid out in a Randomized Block Design with nine treatments and three replications. Acid lime (*Citrus aurantifolia* Swingle) is an important commercial species of citrus considered to be indigenous to India, and is extensively cultivated in almost all states of India under tropical and subtropical climatic conditions. In the present investigation, the highest number of fruits per tree was observed in T₃- Panchakavya - 5% (380.80) followed by T₁- IAA - 50 ppm (350.30). The highest mean fruit weight was observed in T₃- Panchakavya - 5% (53.60) followed by T₁- IAA - 50 ppm (50.40). The treatment T₃- Panchakavya - 5% was recorded the highest per tree yield (20.41 kg) followed by T₁- IAA - 50 ppm (17.65). The highest fruit length was noticed in T₃- Panchakavya - 5% (6.50 cm) followed by T₁- IAA - 50 ppm (5.53 cm), the highest fruit girth was noticed in T₃- Panchakavya - 5% (6.86 cm) and also the highest fruit volume was recorded in T₃- Panchakavya - 5% (51.20 ml) followed by T₁- IAA - 50 ppm (48.85 ml). In this investigation, the highest Juice content (ml/100g) was noticed in T₃- Panchakavya - 5% (55.0 ml), the highest ascorbic acid content was recorded in T₃- Panchakavya - 5% (35.65mg/100g) and the highest acidity was recorded in T₄- Vemivash - 5ml (7.25%).

Keywords: acid lime, growth regulators, botanicals, yield, quality characters.

Introduction

Citrus production is 108 million tons in the world. Brazil is the largest producer of citrus worldwide followed by USA, China and Mexico. Pakistan is among the top thirteen citrus producing countries of the world. The use of growth regulators has become an important component of agro technical procedures for most of the cultivated plants and especially for fruit plants (Monselise, 1979). So in citrus fruits, excessive fruit drop can be controlled by the exogenous application of plant growth regulators. The auxins and gibberellins are used to control the fruit drop in citrus and to improve the quality of fruit (Almeida *et al.*, 2004). Although some references are available in the literature and efforts have been made to control the fruit drop by exogenous application of growth regulators but
there is no precise recommendation for the control of fruit drop in acid lime. The purpose of
the present study was to evaluate different growth regulators and botanical of acid lime cv.
PKM1, with emphasis on their agronomic performance, yield attributing characters. Plant
growth regulators and botanical applied near the terminal buds of trees may increase the rate
of growth by stimulating more or less constant growth during the season. Plant growth
regulators and botanic are used mainly to delay and reduce unwanted fruit abscission (fruit
drop), to delay the senescence and to promote abscision of exces fruit (thinning to increase
the size of the remaining fruit) and to inhibit the growth of suckers on the trunk. Foliar
feeding is one of the ways towards this goal, because there by nutrients are aplied directly to
the site of their metabolism and are not subjected to loses as in case of soil aplication. IAA
increase the flowering, fruit set, fruit size and control the fruit drop and ultimately increase
the yield (Awasthi et al., 1975). So there was a need to test the efficacy of plant growth
regulators and botanicals to reduce fruit drop and improve the quality and yield under agro-
environmental conditions of tropical region of Tam Nudu. This research was initiated as a
preliminary effort however it is well planned and it provides necessary efficacy data for the
registration of use of plant growth regulators (PGRs) and botanicals on acid lime.

The acid lime tress under Tamil Nadu conditions flower normally twice a year during
January – February and June – July and yield fruits mainly during July – August and

Materials and methods

An investigation on “Studies on enhancement of yield and post-harvest quality in acid
lime (Citrus aurantifolia Swingle)” was undertaken at Vanavarayar Institute of Agriculture
Manakkadavu, Pollachi during the year 2014-2015. Which is located at 10.6°N and 77°E
with an altitude of 105 m above MSL. The experiment was laid out in randomized block
design with replicated three times. Seven years old acid lime tree of uniform age, size and
stature, spaced at 5x5m were selected for the experiment. Four trees were selected for each
variety in each replication for the study. The treatment details viz., T1- IAA - 50 ppm, T2-
GA3 - 50 ppm, T3- Panchagavya - 5%, T4- Vemivash - 5ml, T5- Neem extract - 5%, T6-
Moringa leaf extract - 5%, T7- Tender coconut water - 5%, T8- Water spray and T9- Control

Result and Discussion

Influence of growth regulators and botanicals on yield characters
The aim of any applied research is to maximize the yield. Yield in any crop is a multiplicative factor of fruit size and number of fruits, harvested from the tree. Flowering and fruit set are the most critical events occurring after establishment of a crop (Davenport and Nunez-Elisea, 1990). Other possible inductive factors in flowering can be proper nutrition (carbohydrate and nitrogen status of the plant), photoperiod and plant hormones, and other yet undetermined factors (Bernier et al., 1981). In the present investigation, Application of different levels of growth regulators and botanicals through foliar application has caused a significant effect on the ‘number of fruits per tree’. The number of fruits per tree ranged from 235.80 to 380.80. The highest number of fruits per tree was observed in T3- Panchakavya - 5% (380.80) followed by T1- IAA - 50 ppm (350.30). The highest mean fruit weight was observed in T3- Panchakavya - 5% (53.60) followed by T1- IAA - 50 ppm (50.40) and the per tree yield ranged from 9.45 to 20.41 kg. The treatment T3- Panchakavya - 5% was recorded the highest per tree yield (20.41 kg) followed by T1- IAA - 50 ppm (17.65) (Fig 1).

According to Marschner (1995), a balanced supply of nitrogen promoted the translocation of phytohormones to the shoot, probably inducing the flower and fruit initiation. In the present investigation, the important economic traits namely, fruit weight and number of fruits were dramatically influenced by different levels of growth regulators and botanicals. This is might be due to the higher levels of IAA in the leaves of the branches that produced more flowers in late February suggested the involvement of IAA in flower-bud development.

Influence of growth regulators and botanicals on fruit physico-chemical characters

In the present investigation, the highest fruit length was noticed in T3- Panchakavya - 5% (6.50 cm) followed by T1- IAA - 50 ppm (5.53 cm), the highest fruit girth was noticed in T3- Panchakavya - 5% (6.86 cm) followed by T2- GA3 - 50 ppm (5.91 cm) and also the highest fruit volume was recorded in T3- Panchakavya - 5% (51.20 ml) followed by T1- IAA - 50 ppm (48.85 ml). This is might be due to basically, GA3 and IAA promote cell division in plant tissue (Gardner et al., 1985; Letham, 1958) which may cause the development of bigger size fruits and fruit girth. Endogenous level of these hormones fall much lower level within a few days after flowering (Guardiola, 1993). So, exogenous application of these hormones at petal fall and thereafter caused rapid cell division in the pericarp of the fruits. Warusavitharana et al. (2008) also reported that IAA increased the number of cell layers in the fruit cortex while GA3 causes cell expansion resulting bigger size, length berries in grape by combined application of GA3 and IAA.

Influence of growth regulators and botanicals on quality attributes
In any production system, the primary goal is to achieve maximum fruit yield per unit area without affecting the fruit quality. In mango, the quality is mainly judged by total soluble solids (TSS), juice content, ascorbic acid and acidity content in fruits. Application of nutrients, either through soil (or) foliar, has made a remarkable effect on fruit quality as observed by Syamal and Mishra (1988), Suriyapananan (1992) and Shah et al. (2002). In this investigation, the highest juice content (ml/100g) was noticed in T3- Panchakavya - 5% (55.0 ml) followed by T1- IAA - 50 ppm (52.0 ml), the highest ascorbic acid content was recorded in T3- Panchakavya - 5% (35.65mg/100g) followed by T1- IAA - 50 ppm (34.20mg/100g) and the highest acidity was recorded in T4- Vemivash - 5ml (7.25%) followed by T3- Panchakavya - 5% (6.90%) (Fig 1). The growth regulators treatments had an increasing trend towards TSS, total sugars and reducing sugars which is a good sign and the treatments might be selected for the improvement of fruit quality of different varieties although many scientists had reported no effect of growth regulators on fruit quality parameters like TSS, sugars, acidity, TSS/ acidity ratio etc, (Lima and Davies, 1984; Stewart and Klotz, 1947; Hield et al., 1965). Although there were significant differences among treatments in case of acidity, vitamin -C and TSS/ acidity ratio yet most of the treatments are sharing the same letters.

Conclusions
The present findings clearly indicate that foliar application of T1-IAA - 50 ppm,T2-GA3 - 50 ppm,T3-Panchagavya - 5%,T4-Vemivash- 5ml,T5-Neem extract - 5%,T6-Moringa leaf extract - 5%,T7-Tender coconut water - 5%,T8-Water spray,T9-Control. Among the treatments T3-Panchagavya - 5%, and T1-IAA - 50 ppm is effective in improving flowering, fruit yield and juice quality by increasing juice volume/contents, pH, TSS, ascorbic acid, and TSS/acid ratio of juice and providing the maximum control on excessive drop of premature acid lime fruit. Therefore, foliar spray of T3-Panchagavya - 5%, and T1-IAA - 50 ppm at the onset of flowers and fruit formation is suggested to maximize the production of acid lime as well as other citrus fruits.

References

Fig 1. Influence of exogenous application of plant nutrition on yield attributes

![Graph showing the influence of exogenous application of plant nutrition on yield attributes.](image-url)
Table 1. Influence of exogenous application of plant nutrition on floral, fruit set and quality attributes

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Fruit length (cm)</th>
<th>Fruit girth (cm)</th>
<th>Fruit volume (ml)</th>
<th>Juice content (ml/100g)</th>
<th>TSS Brix</th>
<th>Ascorbic acid content (mg/100g)</th>
<th>Acidity (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_1 - IAA @ 50 ppm</td>
<td>5.53</td>
<td>5.44</td>
<td>48.85</td>
<td>52.00</td>
<td>7.10</td>
<td>34.20</td>
<td>6.70</td>
</tr>
<tr>
<td>T_2 - GA₃ @ 50 ppm</td>
<td>5.29</td>
<td>5.91</td>
<td>45.20</td>
<td>47.00</td>
<td>6.50</td>
<td>33.17</td>
<td>6.30</td>
</tr>
<tr>
<td>T_3 - Panchakavya @ 5%</td>
<td>6.50</td>
<td>6.86</td>
<td>51.20</td>
<td>55.00</td>
<td>7.70</td>
<td>35.65</td>
<td>6.90</td>
</tr>
<tr>
<td>T_4 - Vemivash @ 5ml</td>
<td>4.77</td>
<td>5.03</td>
<td>44.85</td>
<td>45.00</td>
<td>6.75</td>
<td>33.49</td>
<td>7.25</td>
</tr>
<tr>
<td>T_5 - Neem extract @ 5%</td>
<td>4.55</td>
<td>4.95</td>
<td>43.27</td>
<td>42.00</td>
<td>6.50</td>
<td>33.40</td>
<td>6.50</td>
</tr>
<tr>
<td>T_6 - Moringa leaf extract @ 5%</td>
<td>4.30</td>
<td>4.44</td>
<td>43.90</td>
<td>42.70</td>
<td>6.30</td>
<td>33.50</td>
<td>5.85</td>
</tr>
<tr>
<td>T_7 - Tender coconut water @ 5%</td>
<td>4.25</td>
<td>4.40</td>
<td>44.25</td>
<td>40.00</td>
<td>6.50</td>
<td>32.70</td>
<td>6.15</td>
</tr>
<tr>
<td>T_8 - Water spray</td>
<td>4.10</td>
<td>4.35</td>
<td>38.75</td>
<td>37.80</td>
<td>6.10</td>
<td>32.95</td>
<td>6.30</td>
</tr>
<tr>
<td>T_9 - Control</td>
<td>4.00</td>
<td>4.13</td>
<td>37.50</td>
<td>35.60</td>
<td>6.00</td>
<td>32.15</td>
<td>5.40</td>
</tr>
<tr>
<td>SEd</td>
<td>0.25</td>
<td>0.26</td>
<td>2.37</td>
<td>2.32</td>
<td>0.34</td>
<td>1.77</td>
<td>0.34</td>
</tr>
<tr>
<td>CD (0.5%)</td>
<td>0.54</td>
<td>0.56</td>
<td>5.08</td>
<td>4.97</td>
<td>0.74</td>
<td>3.80</td>
<td>0.73</td>
</tr>
</tbody>
</table>