Using Behavior of Agrochemicals and Pesticides and Their Impacts on Human Health: A Perception based Rural Study in Bangladesh

ABSTRACT

The main theme of the present study has been taken to know the using behaviour of agrochemicals and pesticides and their impacts on human health at Rangasree union of Barisal district in Bangladesh. Both the primary and secondary sources of data are integrated to achieve the findings of the study. Primary data were collected through direct field observation survey, questionnaire survey, focus group discussion (FGD) and expert’s opinion survey. There are 400 questionnaires were selected randomly and conducted during the months of April 2015 to February 2016. Secondary data were collected from various official records and related researchers’ publications through their paper and articles and also internet sources. It is observed from the study that a significant number of farmers (31%) are used to apply white nitrogen fertilizer mainly Urea in their field. They used to familiar some other chemical fertilizers such as; triple super phosphate (TSP), murate of potash (MP), zinc and single super phosphate (SSP) by 26%, 21%, 8% and 7% respectively found in the study area. It is identified from the study that maximum (95%) farmers are habituated to use urea. Maximum farmers (82.5%) used to apply Basudin ranging from below 2.50 kg per acre to 7.50 kg per acre on paddy land during the cropping season. It is also observed from the study that only 21% users are used to apply spray machine and about 39% farmers are habituated to use free hand for pesticides in their filed. It is recognized from the study that maximum users (75.75%) are more or less affected by the use of agrochemicals and pesticides. The findings of the study also suggested for building awareness about safe agrochemicals and pesticides use with management and undesirable practice.

Keywords: Agrochemicals, Pesticides, Human, Health, Perception, Rural, Bangladesh.

1. INTRODUCTION

Bangladesh is an agriculture based developing country. Agriculture contributes almost 18.70% of total GDP of the country and provides employment 47.30% of total labor force in various types of economic activities [1]. Bangladesh comprises a limited small area with a
large population and the per capita arable land is only 0.21 acres [1]. To fulfill the demand of its huge population, the country needs to apply agro-chemicals and has been applying an increasing amount of chemical fertilizers and pesticides to produce more food [2]. The introduction of fertilizer responsive HYV seeds in the country in mid-60's, coupled with the governmental favorable policy for fertilizer distribution and price controlling, resulted in a rise in fertilizer consumption from 313 thousand MT in 1970-75 to 3,223 thousand MT in 2000-2004 [3]. The excessive use of these agrochemicals is creating detrimental effects on human health, plants, soil, water and the overall environment. Soil organic matter is a key factor in maintaining long-term soil fertility since it is the reservoir of metabolic energy, which drives soil biological processes involved in nutrient availability. A good soil should have at least 2.5% organic matter, but in Bangladesh most of the soils have less than 1.5%, and some soils even less than 1% organic matter [4,.]. Organic matter content of top soils particularly under high land and medium high land situations has declined over time. Organic matter is known as 'storehouse of plant nutrients' and 'life force of a soil' [4,5].

Agrochemical is a generic term for the various chemical products, such as fertilizer, hormone, fungicide, insecticide, or soil treatment that improves the production of crops. Pesticide as an agricultural input was first introduced in Bangladesh since 1957 and the common pest was available namely DDT [6]. The using behaviours of pesticides in Bangladesh are comparatively less in comparison to other nearest developing countries. It is mentionable that, pesticides use in Bangladesh usually 0.03 kg/hectare compared to 0.3 kg/ hectare in India, 0.4 kg/ hectare in Sri Lanka and 0.8 kg/ hectare in Indonesia [7]. However, recently the uses of pesticides are gradually increasing day by day. Simultaneously, uses of agro-chemicals are rapidly increasing which is responsible to reduce the natural nutrients on the soil surface and contaminate the biotic and aquatic environment [8]. Moreover, chemical fertilizers are more harmful in the agro-environment than the natural fertilizer because it can be polluted the soil nutrients and also responsible to decrease the activities of microorganisms into the soil [9]. On the other hand,
chemical fertilizers are needed to grow more agricultural production to ensure the food security. Whole agricultural system is widely depended on the environmental resources. Therefore; direct impacts were felt by the local farmers because of the massive uses of fertilizers on their agriculture land and thus the environmental resources are seems to be lost their ecological system by the pollutants of agrochemicals [10]. Now a days, agricultural development and production must be needed to increase for our own survival. It may be noted that agricultural development could not achieved without the proper implication of agricultural inputs like; HYV of seeds, fertilizers & pests, proper irrigation water either individually or in their suitable combination. The suitable combination of HYV seeds, fertilizers, pesticides and irrigation into the cropping land may increase agricultural output economically. Bangladesh is an over populated and cultivable lands are decreasing day by day. So, to fulfill the demand of this huge population we need to grow more production from our land. That’s why; we are bound to use HYV of seeds, fertilizers & pests and extract our ground water through irrigation by traditional techniques and newly partially added some mechanization. As results last few decades are recorded as witness for major transformation of agriculture including changing behavior of its technology, resource variety and production process. The use of agrochemicals on domestic food crops in developing countries is a more recent occurrence-beginning largely in the 1950's and 1960's [9]. The HYVs wheat and rice varieties described in a report then began to make their appearance in the Least Develop Country (LDC's) in the 1960s, which in turn helped stimulate fertilizer use. The use of both HYV's and agrochemicals was stimulated by a food crisis in South Asia in the mid-1960's [11].

Pesticides can enter the human body in three ways, flow directly by mouth, and infiltrate by skin, and breathing [12]. Moreover, pesticides also can bring a lot of issues to the people who are directly engaged with the chemical fertilizers. Currently, pesticides have become much more serious for long-term effects on human body as well as in foods such as meet, fruits, vegetables and other productions through pesticide residues [9]. Pesticides are often
considered a quick, easy and inexpensive solution for controlling weeds and insect pests in agricultural landscapes. However, pesticide use comes at a significant cost. Pesticides have contaminated almost every part of the environment. Pesticide residues are found in soil and air and in surface and ground water across the nation. Pesticide contamination poses significant risks to the environment and non-target organisms ranging from beneficial microorganisms, to insects, plants, fish, and birds [13]. Although chemical fertilizers and pesticides are used by the rural farmers in Bangladesh to increase the production but some toxic substances of those chemicals are slowly decreasing the soil fertility. Finally, they are responsible for creating hazardous effects to both human health and environment. The study area, Rangasree Union also seems to be potential threatened area for similar types of effects as the farmers are using these agrochemicals and pests vastly in order to increase agricultural crops. The present research project has been taken to find out the recent trends of using behaviours of agrochemicals and pesticides with their impacts on agricultural fields through micro level field study in rural Bangladesh. To assess the concept of agrochemical and their availability, uses and misuses of various chemical fertilizers and pesticides with impacts on soil, water and human health on field level users, the present research project is urgently needed for sustainable rural agricultural development to reduce food security and rural poverty in Bangladesh.

2. MATERIAL AND METHODS

2.1 Aim and objectives

The main aim of the present study was taken to focus on availability, uses and misuses of various agrochemicals and pesticides with their impacts on users’ health through field level perception study and draw a mitigation policy for sustainable agrochemicals and pest management in rural Bangladesh. In order to achieve the goal, the following specific objectives have been taken for the present study.
To identify the concept, uses and availability of agrochemicals and pesticides among the users’ in the study area.

To know the various impacts of agrochemicals and pesticides on human health among the users’ in the study area. and

To draw a mitigation policy adjacent to the massive uses of agrochemicals for sustainable agricultural practices in rural Bangladesh.

In achieving the above-mentioned objectives both the primary and secondary data had been collected and incorporated to analyze the finding of the study. The following stages have been applied to achieve the goal of the study.

2.2 Selection of the study area

The Rangasree Union of Bakergonj Upazila under Barisal District has been taken for the present study (Fig.1).

2.3 Data collection and analysis

The present study was carried out based on the combination of primary and secondary data which were collected from different sources. The major sources of primary data are collected
through questionnaire survey among the agrochemical users’ among study area. There were about 400 respondents were chosen for questionnaire survey and mainly consist with long term cultivator and frequent agrochemicals users on random basis during the months of April, 2015 to February, 2016. There were two FGD were conducted and three intensive interviews were taken from different professional in the study area. After completion of field survey, all the primary data with questionnaires and interview schedule were compiled. Appropriate coding and scoring technique was followed to convert the qualitative data into quantitative forms. The responses of the individual respondent contained in the interview schedules were transferred to a master sheet for entering the date into the computer. As soon as the data entered into the computer, it was then analyzed in accordance with the objectives of the study.

3. RESULTS AND DISCUSSION

3.1 Concept of agrochemicals and pesticides in rural Bangladesh

Agrochemicals are generally prepared with the combinations of essential nutrients for plants to grow properly. The primary nutrients in fertilizers are three essential elements: nitrogen (N), phosphorus (P) and potassium (K), which are often combined into an NPK blend. Secondary nutrients (sulfur, calcium and magnesium) are needed in smaller amounts for normal plant growth. Micronutrients are also needed but in even smaller quantities. Micronutrients include boron, chlorine, copper, iron, manganese, molybdenum, nickel and zinc. [15]. Nutrition is the supply and absorption of those nutrient chemical elements required by an organism. Crop nutrients are the elements indispensable for the growth of crops and not synthesized by the plant during the normal metabolic process [16]. Pesticides are generally familiar as insecticide, herbicide, fungicides etc. They are mainly classified into organochlorines, organophosphates, organ phosphorus and carbamates based on their chemical nature. These chemicals are present in the components of environment through human activities and food chain in living organisms to harmful levels.
The environmental impact of pesticides consists of the effects of pesticides on non-target species. Over 98% of sprayed insecticides and 95% of herbicides reach a destination other than their target species, because they are sprayed or spread across entire agricultural fields [18]. The term pesticide encompasses a large number of chemical compounds over 900 [19]. Pesticides are materials used to prevent, destroy, repel or otherwise control objectionable insects, rodents, plants, weeds or other undesirable forum of life [20].

3.2 Types of agrochemicals and pesticides

Agrochemicals are mainly two types; namely complex fertilizers & Straight fertilizers [21]. Two or more nutrients in one compound are known as complex or compound fertilizers. These fertilizers are granular and easy to apply such as; Di-ammonium Phosphate, Ammonium Phosphate, Ammonium Sulphate. When a chemical fertilizer contains only a single nutrient is called a straight fertilizer such as nitrogenous, phosphate. Common pesticides can be categorized chemically into three general groups such as: inorganic pesticides, natural organic pesticides and synthetic organic. They may also be classified by their biological usefulness viz. insecticides, herbicides, algicides, fungicides and rodenticides [20]. All halogenated pesticides (aDieldrin, cChlordane, tToxaphene, hHeptachlor, mMethoxychlor, DDD, EDB, DBCP and 1,2-dichloropropane) are considered to be significant concern because of their persistence and high potential for creating harm to human and the environment [20].

Pesticides are commonly classified according to the target group of pest organisms namely: (a) Insecticides, (b) Herbicides, and (c) Fungicides [22]. The classifications of pesticides with example are shown in the following Table 1.
Table 1. Types of pesticides with example in the context of Bangladesh

<table>
<thead>
<tr>
<th>Type</th>
<th>Chemical group</th>
<th>Examples with name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insecticides</td>
<td>Chlorinated Hydrocarbons / Organochlorine</td>
<td>Heptachlor, a Aldrin, d Dieldrin, BHC, DDT, e Endrin, c Chlordane, t Toxaphene.</td>
</tr>
<tr>
<td></td>
<td>Organophosphates</td>
<td>Diazinon, p Parathion, d Dursban, m Malathion, p Phosmonidam, s Schradan, d Disulfoton, p Phorate, f Fenitrothion, d Dimethoate, d Dichlorvos.</td>
</tr>
<tr>
<td></td>
<td>Carbonates</td>
<td>Carbaryl, c Carbofuran, m Methomyl, a Aminocarb.</td>
</tr>
<tr>
<td></td>
<td>ParathyroidPyrethroids</td>
<td>Cypermethrin, Fenvalerate</td>
</tr>
<tr>
<td>Herbicides</td>
<td>Phenoxalkyl acids</td>
<td>2, 4-D, 2, 4, 5-T, MCPA.</td>
</tr>
<tr>
<td></td>
<td>Triazines</td>
<td>Atrazine, s Simazine, p Propazine.</td>
</tr>
<tr>
<td></td>
<td>Phenylureas</td>
<td>Diuron, linuron, f Fluometuron.</td>
</tr>
<tr>
<td></td>
<td>Aliphatic acids</td>
<td>Dalapon.</td>
</tr>
<tr>
<td></td>
<td>Carbonates</td>
<td>Butylate, v Vernolate.</td>
</tr>
<tr>
<td></td>
<td>Di-nitro anilines</td>
<td>Trifuralin, b Benfmsin.</td>
</tr>
<tr>
<td></td>
<td>Di-pyrdyl</td>
<td>Paraquat, d Diquat.</td>
</tr>
<tr>
<td></td>
<td>Amides</td>
<td>Alachlor, p Prophocarb, p Propanil, a Alalanap.</td>
</tr>
<tr>
<td></td>
<td>Benzoic acids</td>
<td>Amiben, d Dicambr.</td>
</tr>
<tr>
<td>Fungicides</td>
<td>Thio-carbamates</td>
<td>Ferbam, m Maneb.</td>
</tr>
<tr>
<td></td>
<td>Mercurial</td>
<td>Ceresin.</td>
</tr>
<tr>
<td></td>
<td>Others</td>
<td>Copper sulphate, c Chlorothalional.</td>
</tr>
</tbody>
</table>

Source: [22,23]

3.3 Consumption outlook of agrochemicals in Bangladesh

It is recorded from the secondary sources that total urea fertilizer production was 15 million MT in Bangladesh and total demand was 28.50 million MT in the FY 2008-09 [24]. Domestic production of urea may be covered more than 50% of its total demand of urea. Similarly, domestic production of TSP was 0.50 million MT, which covered 10% and the demand of 4 million MT of MP completely imported from foreign countries [25]. The year wise consumption outlook of chemical fertilizers during the period from financial year (FY) 2007-08 to 2013-14 in Bangladesh are shown in the following Table 2.

Table 2. Consumption outlook of agrochemicals in Bangladesh (In '000' metric ton)

<table>
<thead>
<tr>
<th>FY</th>
<th>Name of Fertilizers</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Urea</td>
<td>TSP</td>
</tr>
<tr>
<td>2007-08</td>
<td>2762.00</td>
<td>392.00</td>
</tr>
<tr>
<td>2008-09</td>
<td>2532.96</td>
<td>156.00</td>
</tr>
<tr>
<td>2009-10</td>
<td>2409.00</td>
<td>420.00</td>
</tr>
<tr>
<td>2010-11</td>
<td>2652.00</td>
<td>564.00</td>
</tr>
</tbody>
</table>

*Comment [U3]: Full name of these or use * and put full name under the table*
3.4 Pesticide practices and consumption outlook in Bangladesh

The farmers of Bangladesh had been begun to use more toxic chemicals to control pests since 1972 that have reputations of speed and effectiveness [26]. The Government of Bangladesh also promotes the use of pesticides to expand its agricultural frontiers and increase output per acre of land [12]. As a result, pesticide use in general is increasing. According to statistics from the Government of Bangladesh, consumption of pesticides increased from 7,350 metric tons in 1992 to 16,200 metric tons in 2001, more than doubling in the past decade [27]. Farmers of Bangladesh mostly use insecticides of organophosphate chemical group rather than other types of pesticides. Generally, they were not much aware of pesticide toxicity and protective measures which must be taken at the time of and after handling, carrying, mixing, storing or any other type of contact with and disposal of pesticides. Moreover, pesticides user are smoking, drinking and consuming something during application resulting suffering from pesticide related both acute and chronic health hazards. It is mentionable that among the pesticides users who are under age group from 15-30 years are suffering vastly [26]. The consumption levels of pesticides use in Bangladesh are shown in the following table.

<table>
<thead>
<tr>
<th>Year</th>
<th>2011-12</th>
<th>2012-13</th>
<th>2013-14</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2296.00</td>
<td>2247.00</td>
<td>2462.00</td>
</tr>
<tr>
<td></td>
<td>678.00</td>
<td>654.00</td>
<td>685.00</td>
</tr>
<tr>
<td></td>
<td>409.00</td>
<td>434.00</td>
<td>543.00</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>20.00</td>
<td>18.00</td>
<td>27.00</td>
</tr>
<tr>
<td></td>
<td>613.00</td>
<td>571.00</td>
<td>577.00</td>
</tr>
<tr>
<td></td>
<td>6.00</td>
<td>8.50</td>
<td>2.70</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>20.00</td>
<td>173.00</td>
</tr>
<tr>
<td></td>
<td>4049</td>
<td>3970.5</td>
<td>4475.78</td>
</tr>
</tbody>
</table>

Source: [24]
It is observed from the above Fig. 2 that pesticides consumption capacity is gradually to be increased day by day from two decades. If the consumption for the last several years, it is established that pesticides consumption is increasing in relation to acreage of irrigated agriculture [28]. The major pesticides used by the farmers are Cypermethrin, Dichlorvos, Malathion, Carbofuran, Mancozeb and Diazinon depending upon the invading pests in different districts of Bangladesh [29]. In Bangladesh, average pesticides use rate is 3.4 kg per acre during the cropping season [30].

3.5 Types and using behavior of agrochemicals in the study area

The present study identified various types of agrochemicals which are used by the farmers in the study area. They are used to familiar with the Urea, TSP and MP as common fertilizers in the study area. The various types of agrochemicals which are frequently used by the farmer in the study are shown in the following Fig.3.
It is observed from the above figure 03 that a significant number of farmers (31%) are frequently used to the white nitrogen fertilizer mainly Urea in their agricultural land. Simultaneously, they used to some other chemical fertilizers such as; triple super phosphate (TSP), murate of potash (MP), zinc and single super phosphate (SSP) by 26%, 21%, 8% and 7% respondents respectively (Fig. 3).

3.6 Types of pesticides which are used in the study area

The present study also identified various types of pesticides which are used by the farmers in the study area. They are used to familiar with the basodin, furadin, sobicron, carote and thiodin in their field. The various types of pesticides which are frequently used by the farmer in the study are shown in the following fig. 4.
3.7 Using level of Agrochemicals on agricultural field in the study area

Inorganic fertilizers have been widely adopted by farmers in the study area because of its wide range of benefits, their cheapness, their cleanliness and ease of handling, their ease of storage and transport. In addition the guaranteed composition of inorganic fertilizers makes it easier for users to determine the rate of application and to predict the effect upon yield. Plants can only absorb their required nutrients if they are present in easily dissolved chemical compounds. The item wise using levels of chemical fertilizers in the study area are shown in the following Table 3.

Table 3. Using behavior of agrochemicals which are used in the study area

<table>
<thead>
<tr>
<th>Name of fertilizer</th>
<th>f*</th>
<th>%</th>
<th>Below 20 kg/acre</th>
<th>20-40 kg/acre</th>
<th>41-60 kg/acre</th>
<th>61-80 kg/acre</th>
<th>Above 80 kg/acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urea</td>
<td>380</td>
<td>95.00</td>
<td>0</td>
<td>8</td>
<td>105</td>
<td>110</td>
<td>48</td>
</tr>
<tr>
<td>Di-ammonium phosphate</td>
<td>210</td>
<td>52.50</td>
<td>20</td>
<td>160</td>
<td>15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Triple super phosphate (TSP)</td>
<td>280</td>
<td>70.00</td>
<td>0</td>
<td>84</td>
<td>80</td>
<td>36</td>
<td>140</td>
</tr>
<tr>
<td>Hyper phosphate (HP)</td>
<td>12</td>
<td>3.00</td>
<td>0</td>
<td>16</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Single super phosphate (SSP)</td>
<td>80</td>
<td>20.00</td>
<td>0</td>
<td>30</td>
<td>26</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Murate of potash (MP)</td>
<td>110</td>
<td>2.50</td>
<td>16</td>
<td>66</td>
<td>10</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Zipsam</td>
<td>30</td>
<td>7.5</td>
<td>10</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Zinc</td>
<td>48</td>
<td>12</td>
<td>28</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: Total number of respondents ($f = 400$). Multiple answers are considered.

It is observed from the above table 3 that about 95% farmers are habituated to use urea while di-ammonium phosphate (52.5%), triple super phosphate (70%) and single super phosphate (20.0%) and rest of uses Murate of potash, hyper phosphate, zinc and others types of fertilizers used agricultural fields in the study area. It may be pointed the use of agrochemicals are rapidly increased from the last 40 years and this seem to be the common phenomenon for the whole south Asia. Liquid fertilizers became more popular because of its effect on high crop production without taking consideration of the possible dangers to the environment. It is also observed from the study that TSP and di-ammonium phosphate are frequently used in different levels by respectively 160 and 105 farmer in the study area (Table 3). For example, Di-ammonium phosphate is used as the level of maximum 41-60 kg/acre, TSP as also 41-60 kg/acre (Table 3). The using level of SSP, MP, Zipsham and Zinc are also mentionable. On the other hand, agrochemical dealers said that they sold 5-25 MT Urea, 1-10 MT TSP, 500kg to 5 MT MoP and 100kg DAP in every three months during the cropping season in the study area (Table 3).

3.8 Using level of pesticides on the agricultural field in the study area

Pests may damage an estimated 30% of crops produced on the farm every year in Bangladesh [31]. Pests are natural enemies affecting crops and may include weeds, insects, slugs, snails, rats and mice. Pesticides are chemicals, which are used to kill or control these pests. Farmers of Bangladesh mostly used to apply insecticide and little amount of fungicide in the agricultural field. The consumption of pesticides throughout the world has increased rapidly over the past fifty years. Starting from 1950s, the consumption increased 10% every year up to 1980s [32]. In 1983 the pesticide consumption was around 20 billion US $ which went up to 27 billion in 1993 averaging 3% growth rate [31]. There is every reason to expect...
that the growth rate of pesticide consumption is likely to increase by the year 2020, especially in the developing countries [32]. Most of the farmers depend on local traders/dealers in selecting the brand or type of pesticide to be used to save their crops from pest infestation. They have little idea about types and dosages of pesticides. The using levels of various pesticides in the study area are shown in the following Table 4.

Table 4. Using level of the pesticides which are used by the farmers in the study area

<table>
<thead>
<tr>
<th>Structure of pesticides</th>
<th>Level of uses</th>
<th>Volume of uses (kg/L per acre) [g=gram; ml=milliliter]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Structure</td>
<td>Name</td>
</tr>
<tr>
<td>Granular</td>
<td>Powder</td>
<td>Basudin</td>
</tr>
<tr>
<td>Powder</td>
<td>Furadin</td>
<td>90</td>
</tr>
<tr>
<td>Thiodin</td>
<td>28</td>
<td>7</td>
</tr>
<tr>
<td>Other</td>
<td>60</td>
<td>15</td>
</tr>
<tr>
<td>Liquid</td>
<td>Mortar</td>
<td>126</td>
</tr>
<tr>
<td>Regent</td>
<td>144</td>
<td>58.5</td>
</tr>
<tr>
<td>Virtako</td>
<td>72</td>
<td>18</td>
</tr>
<tr>
<td>Native</td>
<td>90</td>
<td>22.5</td>
</tr>
</tbody>
</table>

Note: Total number of respondent (f) = 400; f Multiple answers are considered

It may be pointed out from the above table 4 that the popular and common pesticides are available found in different trade name in the local market within the study area such as; organophosphate and carbonate chemical group. Maximum farmers (82.5%) used Basudin ranging from below 2.50 kg per acre to 7.50 kg/acre on paddy land during the cropping season (Table 4).

3.9 Agrochemicals and Pesticides application methods in the study area

Today’s pest management practices require modern equipment to apply a variety of pesticides. In an addition, the equipment must be properly selected, operated, calibrated, and maintained. The pesticide application methods depend on the nature the target pest, the suitability of the application equipment and the cost and efficiency of alternative methods.
and equipments. Different application methods and techniques for using agrochemicals and pesticides in the study area are shown in the following fig. 5 and Photos A to D.

Fig. 5: Application methods for using agrochemicals and pesticides by the farmers.

It is observed from the following fig. 5 that only 21% users are used to use spray machine and about 39% farmers are habituated to free hand to use pesticides in their field.

3.10 Impacts of agrochemicals and pesticides on users’ health

It is observed from the present study that about 75.75% farmers as users are suffered different types of health problems due to excessive use of chemical fertilizers and pesticides in the study area. They freely expressed with their long time experiences that they were suffering eye, respiratory, skin disease, gastrointestinal tract and dental bones problems due
to use chemical fertilizers and pesticides into their agricultural fields. The local doctor also
recognized that various skin-related and other diseases may be generated by the excessive
unsafe use of some toxic agrochemicals and pesticides. According to questionnaire survey,
various skin and other diseases among the farmers which are related to excessive use of
agrochemicals and pesticides in the study area are shown in the following fig 6.

![Graph showing various types of diseases related to agrochemicals and pesticides](image)

Fig. 6: Types of diseases which are found due to use of agrochemicals and pesticides
among the users in the study area; *Multiple answers are considered;

It is observed from the above figure that maximum users are more or less affected by
the use of agrochemicals and pesticides in the study area. Therefore, the various types of
symptoms which are suffered by the users are counted as skin lesions, disease, breathing problem, vomiting, headache, eye problem, nervousness and muscle twitching
observed in the study area. After the use of pesticides they also suffered physical
weakness, chest pain and a small number of farmers suffered in gastric pain and kidney
problem are observed in the study area.

3.10.1 Skin Lesions

Usually, farmers of Bangladesh are unconcerned about toxic effects of agrochemicals
and pesticides. They often expose to it without wearing proper cloths, gloves etc. A large
number of peoples are more or less affected by the skin disease in the study area. It seems
to be a major health hazard for the study area also. It is observed from the present study that
24.23% farmers as users are affected by the skin disease (Fig. 5). They suffered various types of skin diseases like irritation, itching etc.

3.10.2 Breathing problem

Respiratory system is the main sucking organ in human body. It may be affected through spry system of liquid pesticides in agricultural field by handy pump machine. It was observed from the present study that 18.18% farmers were suffering by the breathing problems in study area (Fig. 5). It is also found from the expert opinions that long time of use of toxic chemicals and without precaution and protection for using pesticides are the major reasons for users’ breathing problem disease.

3.10.3 Headache

The excessive use of chemicals can damage the neuron system of human body [26]. The toxicity and dust particles as residues of agrochemicals and pesticides may create headache among the users’ through inhaling system. It is observed from the present study that about 13.63% farmers were suffering from severe headache particularly, after using the agrochemicals and pesticides in the study area (Fig. 5).

3.10.4 Eye problem

Eye is one of the main vision sensors in human body. These two sensors are directly affected when liquid chemicals and pesticides are mixed with water. As a result, after a long time farmers may be suffered eye irritation, eye burn, petrygium, encroached membrane of pupil, poor vision and others problems [2]. It was observed from the present study that about 12.37% farmers as users had been suffering from eye problems particularly who were cultivating rice as well as using pesticides for a long term (Fig. 5).

3.10.5 Vomiting

It is an instant problem through an adverse effect of toxicity of agrochemicals and pesticides among the male and female users in the rural area of Bangladesh. It was observed from the present study that about 13.38% farmers as users had been suffering by this type of health problem (Fig. 5).
3.10.6 Others diseases

Agrochemicals and pesticides can enter into human body during and after application through different parts of it. It was observed from the present study that about 5.30%, 4.04%, 3.03%, and 3.03% farmers as users had been suffering from physical weakness such as; chest pain, muscle twitching and nervousness respectively through the adverse effects of solid and liquid agrochemicals and pesticides (Fig. 65). Pesticide is toxic for all and sometimes fatal to its applicator. Increasing use of pesticides in agriculture has lead to widespread concern about their potential ill-effects on human health. The World Health Organization (WHO) and the United Nations (UN) Environment Program estimate pesticide poisoning rates of 2-3 per minute, with approximately 20,000 workers dying from exposure every year, the majority in developing countries [27].

3.11 Recommendations for safe use of agrochemicals and pesticides

The use of agrochemicals in Bangladesh will be increased in future, because of production oriented economic advantages. Increased yield of agricultural products with the controlled use of agrochemicals will help sustain the agricultural economies of many countries. Nevertheless, the hazards associated with the use of agrochemicals and the particular safety and health problems in the context of Bangladesh. So, the following appropriate action to be needed for sustainable safe use of agrochemicals and to control pests.

i. It should be reduced impact of agrochemicals on farmers' health: Farmers' health problems can be reduced by taking the following precautions when they use agrochemicals and pesticides.

- Farmers must be used to protective cloth and equipments like; gloves, musk etc.
- Keep the pesticides in cold and dry places.
- Do not apply pesticides in favor of wind current.
- Do not throw them into empty containers and other residues in here and there.
- Try to dump them into the peat.
Wash the expose part of the body with soap after using the agrochemicals and pesticides.

ii. It should be reduced the impact of agrochemicals on agro-Environment:
Environmental pollution (soil and water) can be reduced by taking the following measures should be taken:

- Use cow dung
- Use of Zipsham before cultivate the seeds
- Use of Lime and potash
- Use of compact of leaves, dead organisms and wastage
- Destroy pests in natural way

iii. Proper Management should be ensured: To ensure the proper management of agricultural system, the following steps should be taken as necessary.

a. Government should develop good mechanism for enforcing the regulations for the overall management and use of agrochemicals and pesticides, adopting FAO and BARC guidelines with adequate educational and training interventions.

b. Raising the awareness of the grass roots and designing ways of solving existing problems that resulted from improper utilization of agrochemicals. Research and development on the use of bio pesticides and eco-friendly measures are highly recommended to minimize the use of hazardous pesticides.

c. There should be taken an approach to pesticide management and close collaboration of health, agriculture, and environment sectors.

d. Prevention and management of pesticide poisoning, and for enhanced surveillance, training is extremely important and must be carried out by the concerned authorities. For this a central authority for chemical safety needs to be formed to work effectively on chemical safety and risk management.
4. CONCLUSION

Agrochemicals are considered as a powerful weapon or magic bullets in the developing countries in order to enhance the agriculture productivity and considerably improve the major public health indices as well. It is remarkable that farmers may be used a lot of agrochemicals on their agricultural fields. Agrochemicals and pesticide contamination poses directly significant risks to the human health because farmers are directly affected various types of chronic diseases such as; eye problems, respiratory problems, skin diseases, gastrointestinal tract problems, dental problems and other health problems. However, it is observed that agrochemicals are causing serious hazards. The present investigation results are going to suggest that the farmers had limited awareness about safe pesticide management and undesirable practice. Promotion of alternative pest control strategies such as application of bio-pesticides and integrated pesticide management (IPM) is apparently inevitable. Use of bio-pesticides, bioremediation of pesticide-contaminated soils, utilization of plant-associated microbes, and effect of transgenic crop cultivation are some of the successful alternative strategies to pesticide use and application. The impact of pesticides on the human immune system has also attracted attention from scholars. Scholars are agreed with that certain pesticides may affect the human endocrine and immune systems. They also agreed with that pesticides may promote the development of cancer. Therefore; long-term environmental and health impacts of agrochemicals research should be continued in future.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

.
REFERENCES

