Original Research Article

Empirical Analysis of Egg Production Functions: A Case Study of Ikot Ekpene and Uyo metropolis of Akwa Ibom State, Nigeria

ABSTRACT

The study carried out an empirical analysis of egg production functions, a case study of Ikot Ekpene and Uyo Metropolis of Akwa Ibom State, Nigeria. Specifically, this study was carried out to estimate the egg production functions in the study area, determine the resource use efficiency of egg producers in the study area and to make recommendations based on the findings. Data for this study were obtained from primary source collected from thirty – seven (37) purposively selected poultry farmers using personal observations and interview method while the secondary data were obtained from farm records kept by the farmers. Regression analysis was carried out to show the relationship between egg lay and several input explanatory variables namely; feed intake, mortality rate, culling rate, labour and floor space. Resource use efficiency analysis was used to determine the rationality of the firms in their use of resources. The result showed that the effect of feed intake and labour on egg lay was significant at 0.01% level, Floor space was also significant at 0.01. Further analysis showed that sum of elasticities for feed, labour and floor (EP) is 1.59 indicating an increasing return to scale scenario, implying that a 1% increase in the variables; feed, labour, and floor space will lead to a 1.59% increase in egg lay. Of all the four egg production function estimated in this study, it became clear that the exponential function was found to be the lead equation since four out of the five variables employed in this study were significant while other forms had less numbers of significant variables. The analysis with respect to resource use showed that feed, labour and floor space were over utilized during the period of egg lay.

Key words: Egg Production, Production Function, Regression Analysis, Resource Efficiency and Elasticity

1. INTRODUCTION

The poultry industry comprises of several aspects which includes raising of table egg and meat, production of day-old chicks, point-of-lay pullets or ready-to-lay birds, poultry feeds, vaccines and drugs. Of all the aspect listed above, the first two are the main branches of poultry production (Oluyemi and Roberts, 2000). Poultry has a worldwide acceptability across nations and religions unlike pigs and cattle that is discriminated against by some religion. Products from poultry provides an acceptable form of animal protein to most people throughout the world (Smith, 2001). Poultry meat and eggs offer considerable potential for meeting human needs for dietary animal supply (Folorunsho and Onibi, 2005). The poultry industry has become a diverse industry with a variety of business interest such as egg production, broiler production hatchery and poultry equipment businesses (Amos, 2006). Egg is affordable and it’s sale helps to provide employment and means of livelihood to thousands of people (Ojo, 2003). Commercial Poultry production in Nigeria grew rapidly during the 1963 to 1983 periods but performed poorly thereafter. Despite the growth recorded in the poultry industry, egg demand still outweighs egg supply and import has remained on the high side. About 732 million eggs were imported into Nigeria in 1999, 730 million in 2000 (USDA, 2013). The situation remained so because most of the farmers involved in egg production lack technical knowledge, managerial ability and have failed to seek the counsel of experts which has limited their ability to maximise profit which in turn translate to huge capital loss, hence discouragement and frustration (Audu, 2012). This down-turn was attributed to high cost of poultry feeds, day-
old chicks, drugs and especially stringent fiscal measures adopted by Government during the oil boom period resulting to the shutting down of several poultry farms (Dada, 1998). Dedekuma (1989) observed that the decline was drastic from 1986 due to the ban on the importation of maize which constitutes about fifty percent of the required poultry feed. The per-capita consumption of animal protein is higher in developed countries than the developing countries. Smith, (1995) pointed out that this decreasing trend of poultry production can be reversed and the supply of poultry in developing countries can be expanded to meet their need for animal protein because poultry is able to adapt to most areas of the world, has rapid generation time and high rate of productivity. Adebiyi (2000) studied an economic analysis of egg production in Ondo State and reported that apart from the high level of protein in egg, it is easily affordable by the common man than other sources of protein. Owen and Dike, (2013) reported that an average Nigerian consumes about 9.3g of protein per day which is even less than what is required of a child.

Adoption of commercial egg production in Nigeria has been on the increase in recent times owing to the increase in demand, use and consumption of eggs and egg by-products by individuals and firms. Nwosu (1973) stated that large-scale broiler production unlike egg production was carried out by farmers during important festivities when the demand is high. Akinwumi and Ikpi (1979) however observed that most poultry farms in Nigeria concentrated on egg production. Ekaette (1990) found out that egg production was more popular than broiler production in Akwa Ibom State. Preference for egg production to broiler production may be attributed to the reason that egg can easily be disposed of in smaller units and they are not consumed seasonally like broiler meat which is mostly in high demand during festive periods. Smith, up cit observed that some industries use eggs or their by-products in the manufacturing of vaccines, soaps, cosmetics and paints. Egg shells when grinded can be used as scouring powder to scrub kitchen utensils, pans and pots.

Production is a basic economic activity and involves the creation of utility. According to Cowling et al (1970), “the activity of production may be defined as the process of combining and coordinating materials and factors services (inputs) in the creation of goods and services (output). Gould and Ferguson (1980) defined production as the creation of any good or service people will buy. Olayide and Heady (1982) defined production as the process of transforming inputs into outputs, (Cowling et al., 1970) defined production function as a concept which relates how the output from a production activity depends upon the quantity of inputs combined in the activity. Specifically they define production function as the technical relationship which shows for a given state of technical knowledge, the maximum possible level of output for any given level of inputs. Production functions specifies the maximum output that can be produced from any given amount of inputs. (Begg et al., 1994). Penson et al (1996) asserted that production function characterizes the physical relationship between a number of inputs and the level of output. Olayide and Headay (1982) asserted that production function stipulates the technical relationships between inputs and outputs in any production scheme or process. Production function is a purely technical relationship which connects factors and outputs. It describes the laws of proportion that is, the transformation of factor inputs into products (outputs) at any particular time period (Koutsoyiannis, 1979). The term production function is unique in concept and could be expressed mathematically. Salvatore (1986) described Production Function as an equation, table or graphs showing the maximum quantity of commodity that can be produced per unit of time for each set of alternative inputs when the best production technique available are used. The production function portrays an input-output relationship. It describes the rate at which resources are transformed into products (Doll and Orazem, 1984).

Production function in traditional economic theory assumes the form;

\[
Y = f (X_1, X_2, \ldots, X_n)
\]

Equation 1 implies that output (Y) is a function of inputs \((X_1, X_2, \ldots, X_n)\)

In explicit form, there are many forms of equations ranging from linear to power (Cobb-Douglas), quadratic, square root, exponential and transcendental functions. The functions are assumed to be continuous and differentiable (Olayide and Heady, 1982; Sankhayan, 1982). It’s differentiability has allowed the derivation of elasticities, marginal values and other parameters which are identified and used in determining resource productivity as well as efficiency. Productivity on the other hand is defined as output per unit of input (Doll and Orazem, 1978). Olayide and Heady,1962 considered agriculture productivity as the index of the ratio of the value of total farm output to the value of total inputs used in the farm production. It is difficult to see the future clearly enough to allow the making of current dispositions of resources that will be best for the future, nor to
was obtained. The equations include the following;

sizes; small, medium and jumbo. The study made use of four functional forms, out of which a lead equation
prices of feed, wage rate. In these farms, eggs collection were made twice a day and the eggs were of different
were taken as the average market prices of eggs whereas the input prices were taken as the average market
farms summing it up to 111,000 birds in all. Each of the farms engaged a minimum of 10 staff. Product prices
balance of 10%. The strains of birds raised include Rhode Island Red (RIR) which is noted for her good egg
twice a day. With the large size eggs comprising of 70%, jumbo size 20% and small size making up for the
in deep litter system. The birds were fed twice a day and eggs (small, large and Jumbo size) were collected
twice a day. With the large size eggs comprising of 70%, jumbo size 20% and small size making up for the
balance of 10%. The strains of birds raised includes Rhode Island Red (RIR) which is noted for her good egg
production. An average of about Three thousand (3,000) birds were kept by each of the purposively selected
farms summing it up to 111,000 birds in all. Each of the farms engaged a minimum of 10 staff. Product prices
were taken as the average market prices of eggs whereas the input prices were taken as the average market
prices of feed, wage rate. In these farms, eggs collection were made twice a day and the eggs were of different
sizes; small, medium and jumbo. The study made use of four functional forms, out of which a lead equation
was obtained. The equations include the following;

(i) Linear Production Function which is expressed as;

\[Y = bo + b1x1 + b2x2 + b3x3 + b4x4 + b5x5 + \mu_{t} \]........... 1

Where \(Y \) = Output (egg lay)
\(bo \) = intercept
\(b1 - b5 \) = regression coefficient
\(\mu \) = error term
\(x1 - x5 \) = explanatory variables

(ii) Exponential production function

\[Y = bo \times b1^{x1} \times b2^{x2} \times b3^{x3} \times b4^{x4} \times b5^{x5} \]........... 2
\[\ln Y = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + b_4 x_4 + b_5 x_5 + \mu \]

(iii) Double Log Production Function

\[\ln Y = \ln b_0 + b_1 \ln x_1 + b_2 \ln x_2 + b_3 \ln x_3 + \ldots + b_5 \ln x_5 + \mu \]

(iv) Semi Log Production Function

\[Y = b_0 + b_1 \ln x_1 + b_2 \ln x_2 + b_3 \ln x_3 + \ldots + b_5 \ln x_5 + \mu \]

From the equations above, it imply that a total change in egg production is brought about by change in input variables. A priori expectation suggest that feed intake and labour per bird should be positively related to egg lay per bird. On the other hand, average mortality rate, average culling rate and floor space per bird are expected to vary negatively with egg lay. It is therefore expected that \(x_1 \) and \(x_4 \) will carry positive sign while \(x_2 \) and \(x_5 \) will carry negative signs.

The elasticity of production (EP) for the different production forms were estimated using the following:

(i) Linear Function

\[EP = b_1 * \frac{X}{Y} \]

here, MPP = \(b_1 \)

where; \(b_1 \) = Coefficients of the variables
\(X \) = mean of the variables
\(Y \) = mean of output

(ii) Exponential Function

\[EP = b_1 * X \]

Where \(b_1 \) = Coefficients of the variables
\(X \) = mean of the variables

(iii) Double log function

\[EP = b_1 \]

where \(b_1 \) = coefficient of the variables

(iv) Semi Log Function

\[EP = \frac{b_1}{Y} \]

Where \(b_1 \) = Coefficients of the variables
\(Y \) = mean of the Output
Efficiency in resource use is achieved when the marginal Value of the Product (MVP) is equal to the price of the input.

The formula is given as:

$$MVP = P_x \text{ or } MVP/P_x = 1 \text{ in a ratio form}$$

Where MVP = Marginal Value Product of input

$$P_x = \text{Price of input}$$

The MVPs were obtained by multiplying their respective marginal physical products with their prices.

That is, $$MVP = MPP \times P_y$$

III. RESULT AND DISCUSSION:

Table 1: Egg Production Estimate For 48 Weeks of Egg Lay

<table>
<thead>
<tr>
<th>Functional Forms</th>
<th>Linear</th>
<th>Exponential</th>
<th>Double log-Exponential</th>
<th>Semi log</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-37904</td>
<td>9.957</td>
<td>2.265</td>
<td>-599063.4</td>
</tr>
<tr>
<td>Feed</td>
<td>3.178</td>
<td>1.20E+00</td>
<td>0.934</td>
<td>-11051.78</td>
</tr>
<tr>
<td>X₁c</td>
<td>(9.344)***</td>
<td>(2.667)**</td>
<td>(14.524)***</td>
<td>(-0.105)NS</td>
</tr>
<tr>
<td>Mortality rate</td>
<td>-433.444</td>
<td>0.006</td>
<td>-0.001</td>
<td>-1553.553</td>
</tr>
<tr>
<td>X₂c</td>
<td>(-0.638)NS</td>
<td>(0.667)NS</td>
<td>(-0.314)NS</td>
<td>(-0.375)NS</td>
</tr>
<tr>
<td>Culling rate</td>
<td>619.837</td>
<td>0.031</td>
<td>0.002</td>
<td>-8611.879</td>
</tr>
<tr>
<td>X₃c</td>
<td>(0.0605)NS</td>
<td>(2.270)**</td>
<td>(0.398)NS</td>
<td>(-1.337)NS</td>
</tr>
<tr>
<td>Labour</td>
<td>42277.12</td>
<td>0.654</td>
<td>0.202</td>
<td>212041.3</td>
</tr>
<tr>
<td>X₄c</td>
<td>(3.847)***</td>
<td>(4.493)***</td>
<td>(2.058)**</td>
<td>(1.317)NS</td>
</tr>
<tr>
<td>Floor Space</td>
<td>206.101</td>
<td>-0.005</td>
<td>-0.028</td>
<td>223549.2</td>
</tr>
<tr>
<td>X₅c</td>
<td>(3.024)</td>
<td>(-4.353)***</td>
<td>(-0.411)NS</td>
<td>(1.987)*</td>
</tr>
<tr>
<td>R²</td>
<td>0.993</td>
<td>0.853</td>
<td>0.989</td>
<td>0.756</td>
</tr>
<tr>
<td>Adj. R²</td>
<td>0.992</td>
<td>0.829</td>
<td>0.987</td>
<td>0.717</td>
</tr>
<tr>
<td>Akaike info</td>
<td>23.982***</td>
<td>1.519NS</td>
<td>-1.050NS</td>
<td>27.573***</td>
</tr>
<tr>
<td>F. Statistics</td>
<td>919.061***</td>
<td>35.846***</td>
<td>542.662***</td>
<td>19.218***</td>
</tr>
</tbody>
</table>

Source: Field study

Note:

* = Significant at 10%
** = Significant at 5%
*** = Significant at 1%
NS = Non Significant

Figure in parenthesis represents t - statistics
The regression analysis results of the egg production function for 48 weeks are presented in four production functional forms namely; linear, Exponential, Double log and Semi-Log forms above. Of the four functional forms estimated, the exponential form was chosen as the lead equation and used in the discussion because four of the five variables were significant whereas the other forms had less number of significant variables as presented in the table 1 above. The significant variables were feed, culling rate (significant at 5%), labour and floor space which were significant at 1% level. These variables significantly affected the egg lay during the entire 48 weeks of egg lay.

Floor space carried a negative sign implying that less output is achieved with increased floor space. This finding agrees with that of Okorie (2000). The elasticity of production for feed, labour and floor space are 0.74, 1.47 and -0.62 respectively indicating that a 1% increase in these variables will bring about a 0.74, 1.47 and -0.62 percent increase in egg lay. The sum of elasticity is given as 1.59 indicating an increase in return to scale which implies that if all the above mentioned variable increase by 1%, egg lay will increase by 1.59%.

<table>
<thead>
<tr>
<th>Period of lay (48 weeks)</th>
<th>Variables</th>
<th>APP(Y/X)</th>
<th>MPP</th>
<th>MVP(MP X PY)</th>
<th>PX(N)</th>
<th>PY(N)</th>
<th>Allocative Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed</td>
<td>x_1c</td>
<td>5.1601</td>
<td>2.25</td>
<td>33.75</td>
<td>48.00</td>
<td>15.00</td>
<td>0.70</td>
</tr>
<tr>
<td>Labour</td>
<td>x_2c</td>
<td>377.72</td>
<td>554.53</td>
<td>5665.80</td>
<td>48,000.00</td>
<td>15.00</td>
<td>0.12</td>
</tr>
<tr>
<td>Floor Space</td>
<td>x_3c</td>
<td>920.37</td>
<td>572.01</td>
<td>8550.15</td>
<td>12,000.00</td>
<td>15.00</td>
<td>0.72</td>
</tr>
</tbody>
</table>

(B) Resource Use Efficiency of Poultry Farmers for 48 weeks

In the entire 48 weeks of egg lay, the resource use efficiency for feed, labour and floor space was 0.70, 0.12 and 0.72 respectively. This implies that in the whole laying phase, (production cycle), all the three resources; feed, labour and floor space were over utilized. The farmers were not rational in their resource utilization. These finding differs from Okorie (2000) who found out that farmers were rational in their resource use based on the study of 15 farms of Loghman brown birds. The variation may be attributed to the fact that he used only feed resource to determine rationality in his study, fewer number of farms and a homogenous flock size.

IV. CONCLUSION AND RECOMMENDATIONS

Findings from the research above points to the fact that egg lay was affected by mortality, thus farmers should pay attention more to health care services of the layers to further reduce the mortality of birds to the barest minimum. The study further reveals that in estimating the egg production function of poultry birds, it is advisable that the researcher employs the exponential production function for effective estimation. The resource use efficiency of feed, labour and floor space given as 0.70, 0.12 and 0.72 respectively implies over utilization of these resources. This result differs from those of Okorie (2000) who found out that farmers were rational in their resource utilization. It also differs from result of Yusuf and Malomo (2007) whose finding shows that poultry farmers are relatively technically efficient. Profitability in broiler production can be achieved if farmers feed their birds with recommended amount of feed, employ optimum man-day in the farm and provide a floor.
space of 0.1m² per bird in the farm. The study concludes that poultry production is profitable in the study area, and that most of the respondents are relatively efficient technically.

REFERENCES

