Empirical Analysis of Egg Production Functions: A Case Study of Ikot Ekpene and Uyo metropolis of Akwa Ibom State, Nigeria

ABSTRACT

The study carried out an Empirical Analysis of Egg Production Functions, a case Study of Ikot Ekpene and Uyo Metropolis of Akwa Ibom State, Nigeria. Specifically, this study was carried out to estimate the egg production functions in the study area, determine the resource use efficiency of egg producers in the study area and to make recommendations based on the findings. Data for this study were gotten from primary and secondary sources collected from thirty – seven (37) purposively selected poultry farmers using personal observations and interview method while the secondary data were obtained from farm records kept by the farmers. Regression analysis was carried out to show the relationship between egg lay and several input explanatory variables namely; feed intake, mortality rate, culling rate, labour and floor space. Resource use efficiency analysis was used to determine the rationality of the firms in their use of resources. The result showed that the effect of feed intake and labour on egg lay was significant at 0.01% level, Floor space was also significant at 0.01. Further analysis showed that sum of elasticity of is equal to 1.59 indicating an increasing return to scale scenario, implying that a 1% increase in the variables; feed, labour, and floor space will lead to a 1.58% increase in egg lay. Of all four egg production function estimated in this study, it was clear that the exponential function was found to be the lead equation since four out of the five variables employed in this study were significant where as other forms had less numbers of significant variables. The analysis with respect to resource use showed that feed, labour and floor space were over utilized during the period of egg lay.

Key words: Production Function, Regression Analysis, Resource Efficiency and Elasticity

1. INTRODUCTION

The poultry industry comprises of several aspects which includes raising of table egg and meat, production of day-old chicks, point-of-lay pullets or ready-to-lay birds, poultry feeds, vaccines and drugs. Of all the aspect listed above, the first two are the main branches of poultry production (Oluyemi and Roberts, 2000). Poultry has a worldwide acceptability across nations and religions unlike pigs and cattle that is discriminated against by some religion. Products from poultry provides an acceptable form of animal protein to most people throughout the world (Smith, 2001). Commercial Poultry production in Nigeria grew rapidly during the 1963 to 1983 periods but performed poorly thereafter. This down-turn was attributed to high cost of poultry feeds, day-old chicks, drugs and especially stringent fiscal measures adopted by Government during the oil boom period resulting to the shutting down of several poultry firms (Dada, 1986). Dedekuma (1989) observed that the decline was drastic right from 1986 due to the ban on the importation of maize which constitutes about fifty percent of the required poultry feed. The per-capita consumption of animal protein is higher in developed countries than the developing countries. Smith upcit pointed out that this trend can be reversed and the supply of poultry in developing countries can be expanded to meet their need for animal protein because poultry is able to adapt to most areas of the world, has rapid generation time and high rate of productivity.

Adoption of commercial egg production in Nigeria has been on the increase in recent times owing to the increase in demand, use and consumption of eggs and egg by-products by individuals and firms in a bid to meet their protein requirements and output demand. Nwosu (1973) stated that large-scale broiler production unlike
Production and they found out that egg production a re influenced by flock size. Oluyemi an d Roberts upcit focused on cost and return in commer cial egg production showed that feed intake has increasing retu rns on input and output relationship in commercial egg production. Okorie (2000) in his study found out that effect of feed intake on egg lay was significant and feed intake had a positive effect on egg lay. Oluyemi and Roberts up.cit observed that 250-300 eg gs are laid per bird during the first year of lay. Eyenihi (1987) observed that the point of showing a drastic rate of weekly in egg production with advancing ag e provided a glimpse of the trend of egg production. Olayide and Heady (1982) asserted that production function stipulat es the technical relationships between inputs and outputs in any production scheme or process. Production function is a purely technical relationship which connects factors and outputs. It describes the laws of proportion that is, the transformation of factor inputs into products (outputs) at any particular time period (Koutsoyiannis, 1979). The term production function is unique in concept and could be expressed mathematically. Salvatore (1996) described Production Function as an equation, table or graphs showing the maximum quantity of commodity that can be produced per unit of time for each set of alternative inputs when the best production technique available are used. The production function portrays an input-output relationship. It describes the rate at which resources are transformed into products (Doll and Orazem, 1984).

Production function in traditional economic theory assumes the form;

\[Y = f (X_1, X_2, \ldots, X_n) \]

In explicit form, there are many forms of equations ranging from linear to power (Cobb-Douglas), quadratic, square root, exponential and transcendental functions. The functions are assumed to be continuous and differentiable (Olayide and Heady, 1982; Sankhyayan, 1982). It’s differentiability has allowed the derivation of elasticities, marginal values and other parameters which are identified and used in determining resource productivity as well as efficiency. Productivity on the other hand is defined as output per unit of input (Folley, 1973). Olayide and Heady upcit considered agriculture productivity as the index of the ratio of the value of total farm output to the value of total inputs used in the farm production. It is difficult to see the future clearly enough to allow the making of current dispositions of resources that will be best for the future, nor to measure accurately the productivity of the portion of current resources to be transformed (Folley, upcit. Therefore, average as well as marginal products as used in measuring productivity. Koutsoyiannis, upcit defined average product as the total output from using a set of input divided by the amount of any of the inputs being used. Thus the average product of labour would be given as total product (TP) divided by the total amount of labour used (Begg et al, 1994; Salvatore, 1996; Thomas, 1980; Koutsoyiannis, upcit. Marginal productivity on the other hand is defined as the increase in total output that results from the employment of an extra unit of variable factors of production.

Oluyemi and Roberts up.cit observed that 250-300 eggs are laid per bird during the first year of lay. Eyenihi (1987) observed that the point of showing a drastic rate of weekly in egg production with advancing age occurring during the first quarter of the production (40th - 52nd) weeks of lay. Say (1987) stated that the optimum level of egg production should be reached at about 25 weeks of egg lay or 46 weeks of bird age. Researches on input and output relationship in commercial egg production showed that feed intake has increasing returns on egg lay. Okorie (2000) in his study found out that effect of feed intake on egg lay was significant and feed intake had a positive effect on egg lay. Oluyemi and Robert upcit focused on cost and return in commercial egg production and they found out that egg production are influenced by flock size.
Commercial egg production is widely adopted and practiced in Akwa Ibom State especially in Ikot Ekpene and Uyo metropolis. There seems to be frequent movement of eggs from these towns to Calabar Municipality in Cross River State, probably due to high demand for eggs in the latter. However, the extent to which egg production in these areas is affected by the various variables relevant in egg production is not known, also the differences in input and output prices in the areas may affect production. It is not known if farmers are to continue with egg production or if the farmers are efficiently utilising their resources. There is need to investigate the functional relationship existing between egg production and the various explanatory variables and also to attempt to proffer answers to the following questions: i. To what extent is egg lay affected by the following explanatory variables (feed, mortality rate, culling rate, labour and floor space).

The specific objectives of this study are to:

i. estimate the egg production functions in the study area
ii. determine the resource use efficiency of egg producers in same area
iii. To make recommendations based on the findings of the study.

II. RESEARCH METHODOLOGY

The study made use of both primary and secondary data and the study covered the period of forty Eight (48) weeks. The primary data were obtained from thirty seven (37) purposively selected poultry farmers using personal observations and interview method. While the secondary data were obtained from farm records kept by farmers. Data obtained from farm records include floor spacing, number of dead birds, number of eggs laid daily and number of workers/ attendants. Product prices were taken as the average market prices of eggs whereas the input prices were taken as the average market prices of feed, wage rate. The study was conducted in Ikot Ekpene and Uyo Metropolises of Akwa Ibom State, Nigeria. The study made use of four functional forms, out of which a lead equation will be obtained. The equations include the following:

(i) Linear Production Function which is expressed as:

\[Y = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + b_4 x_4 + b_5 x_5 + \mu_t \] 1

Where
\(Y \) = Output (egg lay)
\(b_0 \) = intercept
\(b_1 \) - \(b_5 \) = regression coefficient
\(\mu \) = error term
\(x_1 \) - \(x_5 \) = explanatory variables

(ii) Exponential production function

\[\ln Y = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + b_4 x_4 + b_5 x_5 + \mu_t \] 2

Where
\(Y \) = Output (egg lay)
\(b_0 \) = intercept or constant term
\(b_1 \) - \(b_5 \) = regression coefficient
\(\mu \) = error term
\(x_1 \) - \(x_5 \) = explanatory variables

(iii) Double Log Production Function

\[\ln Y = \ln b_0 + b_1 \ln x_1 + b_2 \ln x_2 + \ln x_3 + \ldots \ldots \ln x_5 + \mu \]

Where
\(Y \) = Output (egg lay)
\(b_0 \) = intercept or constant term
\(b_1 \) - \(b_5 \) = regression coefficient
\(\mu \) = error term
\(x_1 \) - \(x_5 \) = explanatory variables
(iv) Semi Log Production Function

\[Y = b_0 + b_1 \ln x_1 + b_2 \ln x_2 + b_3 \ln x_3 + \ldots \ldots b_5 \ln x_5 + \mu \]

Where

- \(Y \) = Output (egg lay)
- \(b_0 \) = intercept or constant term
- \(b_1, b_2, b_3, b_4, b_5 \) = regression coefficient
- \(\mu \) = error term
- \(x_1, x_2, x_3, x_4, x_5 \) = explanatory variables

From the equations above, it implies that a total change in egg production is brought about by change in input variables. A priori expectation suggest that feed intake and labour per bird should be positively related to egg lay per bird. On the other hand, average mortality rate, average culling rate and floor space per bird are expected to vary negatively with egg lay. It is therefore expected that \(x_1 \) and \(x_4 \) will carry positive sign while \(x_2 \) and \(x_5 \) will carry negative signs.

The elasticity of production (EP) for the different production forms were estimated using the following:

(i) Linear Function

\[EP = b_1 \cdot \frac{X}{Y} \]

where \(b_1 \) = Coefficients of the variables
\(X \) = mean of the variables
\(Y \) = mean of output

(ii) Exponential Function

\[EP = b_1 \cdot X \]

where \(b_1 \) = Coefficients of the variables
\(X \) = mean of the variables

(iii) Double log function

\[EP = b_1 \cdot Y \]

where \(b_1 \) = coefficient of the variables
\(Y \) = mean of the Output

(iv) Semi Log Function

\[EP = \frac{b_1}{Y} \]

where \(b_1 \) = Coefficients of the variables
\(Y \) = mean of the Output

Efficiency in resource use is achieved when the marginal Value of the Product (MVP) is equal to the price of the input.

The formula is given as:

\[MVP = P_x \text{ or } MVP/P_x = 1 \text{ in a ratio form} \]

where \(MVP = \) Marginal Value Product of input
\(P_x = \) Price of input
The MVPs were obtained by multiplying their respective marginal physical products with their prices.

That is, \(\text{MVP} = \text{MPP} \times P_y \)

III. RESULT AND DISCUSSION:

Table 3.0: Egg Production Estimate For 48 Weeks of Egg Lay

<table>
<thead>
<tr>
<th>Variables</th>
<th>Linear</th>
<th>Exponential</th>
<th>Double log-Exponential</th>
<th>Semi log</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C)</td>
<td>-37904</td>
<td>9.957</td>
<td>2.265</td>
<td>-599063.4</td>
</tr>
<tr>
<td></td>
<td>(-2.026)</td>
<td>(40.163)***</td>
<td>(4.711)**</td>
<td>(-0.759)NS</td>
</tr>
<tr>
<td>Feed</td>
<td>3.178</td>
<td>1.20E-05</td>
<td>0.934</td>
<td>-11051.78</td>
</tr>
<tr>
<td>(X_c)</td>
<td>(9.344)***</td>
<td>(2.667)**</td>
<td>(14.524)***</td>
<td>(-0.105)NS</td>
</tr>
<tr>
<td>Mortality rate</td>
<td>-433.4444</td>
<td>0.006</td>
<td>-0.001</td>
<td>-1553.553</td>
</tr>
<tr>
<td>(X_c)</td>
<td>(-0.638)NS</td>
<td>(0.667)NS</td>
<td>(-0.314)NS</td>
<td>(-0.375)NS</td>
</tr>
<tr>
<td>Culling rate</td>
<td>619.837</td>
<td>0.031</td>
<td>0.002</td>
<td>-8611.879</td>
</tr>
<tr>
<td>(X_c)</td>
<td>(0.060)NS</td>
<td>(2.270)**</td>
<td>(0.398)NS</td>
<td>(-1.337)NS</td>
</tr>
<tr>
<td>Labour</td>
<td>42277.12</td>
<td>0.654</td>
<td>0.202</td>
<td>212041.3</td>
</tr>
<tr>
<td>(X_c)</td>
<td>(3.847)***</td>
<td>(4.493)***</td>
<td>(2.058)**</td>
<td>(1.317)NS</td>
</tr>
<tr>
<td>Floor Space</td>
<td>206.101</td>
<td>-0.005</td>
<td>-0.028</td>
<td>223549.2</td>
</tr>
<tr>
<td>(X_c)</td>
<td>(3.024)**</td>
<td>(-4.353)***</td>
<td>(-0.411)NS</td>
<td>(1.987)*</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.993</td>
<td>0.853</td>
<td>0.989</td>
<td>0.756</td>
</tr>
<tr>
<td>Adj. (R^2)</td>
<td>0.992</td>
<td>0.829</td>
<td>0.987</td>
<td>0.717</td>
</tr>
<tr>
<td>Akaike info</td>
<td>23.982**</td>
<td>1.519NS</td>
<td>-1.050NS</td>
<td>27.573***</td>
</tr>
<tr>
<td>F. Statistics</td>
<td>919.061**</td>
<td>35.846***</td>
<td>542.662***</td>
<td>19.218***</td>
</tr>
</tbody>
</table>

Source: Field study

Note:

* = Significant at 10%

** = Significant at 5%

*** = Significant at 1%

NS = Non Significant

Figure in parenthesis represents t - statistics

(A) Estimate of Egg Production Functions for 48 Weeks

The regression analysis results of the egg production function for 48 weeks are presented in four production functional forms namely; linear, Exponential, Double log and Semi-Log forms above. Of the four functional forms estimated, the exponential form was chosen as the lead equation and used in the discussion because four of the five variables were significant whereas the other forms had less number of significant variables as presented in the table 3.1 below. The significant variables were feed, culling rate (significant at 5%), labour and floor space which were significant at 1% level. These variables significantly affected the egg lay during the entire 48 weeks of egg lay.

Floor space carried a negative sign implying that less output is achieved with increased floor space. This finding agrees with that of Okorie (2000). The elasticity of production for feed, labour and floor space are 0.74, 1.47 and -0.62 respectively indicating that a 1% increase in these variables will bring about a 0.74, 1.47 and -0.62 percent increase in egg lay. The sum of elasticity is given as 1.59 indicating an increase in return to scale which implies that if all the above mentioned variable increase by 1%, egg lay will increase by 1.58%.
Period of lay (48 weeks)

<table>
<thead>
<tr>
<th>Variables</th>
<th>APP(Y/X)</th>
<th>MPP</th>
<th>MVP(M P X PY)</th>
<th>PX(N)</th>
<th>PY(N)</th>
<th>Allocative Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed X_c</td>
<td>5.1601</td>
<td>2.25</td>
<td>33.75</td>
<td>48.00</td>
<td>15.00</td>
<td>0.70</td>
</tr>
<tr>
<td>Labour X_c</td>
<td>377.72</td>
<td>554.53</td>
<td>5665.80</td>
<td>48,000.00</td>
<td>15.00</td>
<td>0.12</td>
</tr>
<tr>
<td>Floor Space X_c</td>
<td>920.37</td>
<td>572.01</td>
<td>8550.15</td>
<td>12,000.00</td>
<td>15.00</td>
<td>0.72</td>
</tr>
</tbody>
</table>

B) Resource Use Efficiency of Poultry Farmers for 48 weeks

In the entire 48 weeks of egg lay, the resource use efficiency for feed, labour and floor space was 0.70, 0.12 and 0.72 respectively. This implies that in the whole laying phase, (production cycle), all the three resources: feed, labour and floor space were over utilized. The farmers were not rational in their resource utilization. These finding differs from Okorie (2000) who found out that farmers were rational in their resource use based on the study of 15 farms of Loghman brown birds. The variation may be attributed to the fact that He used only feed Resource to determine rationality in his study, fewer number of farms and a homogenous flock size.

IV. RECOMMENDATIONS

Findings from the research above points to the fact that egg lay was affected by mortality, thus farmers should pay attention more to health care services of the layers to further reduce the mortality of birds to the barest minimum. The study further reveals that in estimating the egg production function of poultry birds, it is advisable that the researcher employs the exponential production function for effective estimation. It is obvious that feed and floor space were over utilized thus increasing the overhead cost and reducing the farmer’s profit margin. It is recommended that farmers should feed their birds with recommended amount of feed and reduce the floor space with respect to the number of birds raised.

REFERENCES

